基于神经网络的加密恶意流量检测技术研究 | |
所属分类:技术论文 | |
上传者:wwei | |
文档大小:4295 K | |
标签:加密恶意流量可伸缩的窗口自注意力深度学习 | |
所需积分:0分积分不够怎么办? | |
文档介绍:随着加密通信的广泛应用,传统基于内容分析的恶意流量检测方法逐渐失效,如何高效检测加密流量中的恶意行为成为网络安全领域的研究重点。研究提出了一种基于神经网络的加密恶意流量检测方法,通过深度学习模型实现恶意加密流量的分类。首先,将网络流量预处理并提取关键特征,包括包大小分布、时间间隔及协议类型等,随后将特征映射为二维特征图(Feature Map),作为深度学习模型的输入。设计可伸缩的窗口自注意力机制,利用Transfomer神经网络模型对特征图进行分类,实现了对恶意流量的高效检测。实验结果表明,该方法在检测精度、召回率等方面均表现优异,为解决加密流量恶意行为检测问题提供了一种可行方案。 | |
现在下载 | |
VIP会员,AET专家下载不扣分;重复下载不扣分,本人上传资源不扣分。 |
Copyright © 2005-2024华北计算机系统工程研究所版权所有京ICP备10017138号-2