1引言
功率因数校正(PFC" title="PFC">PFC)技术能够实现各种电源装置电网侧电流正弦化,使电网资源得到充分利用,基本上消除负载对电网、负载对负载之间的高次谐波污染,净化电网。单相PFC已进入实用阶段,实现方式多种多样,较为常见的有用UC3854为控制IC设计的3kW以下的PFC电路,但该电路较为复杂,外围元件多,特别是小功率的应用,如150W,该电路就显得复杂,成本高。本文介绍了用TOPSwitch设计的功率150W以下简捷的PFC电路设计。
2TOPSwitch在PFC中应用的设计原理
TOPSwitch为三端脉宽调制(PWM" title="PWM">PWM)开关,实现相同的功能,TOPSwitch外围元件最少。并且TOPSwitch具有开关电源所有必须的功能,内含功率MOSFET,PWM控制器,内起动电路,环路补偿和热关断电路。所以它能使电源电路得以进一步简化,缩短设计时间,此为TOPSwitch设计的最大优点,并且TOPSwitch设计电源电路保证高的电源效率。
图1为一个简单的应用TOPSwitch设计的升压型PFC电路,TOPSwitch工作频率为100kHz,远高于电网频率,通过电源滤波器在电网侧可以实现正弦输入电流波形,并且与输入电压的波形同相。这个电路在提升电感上产生的波形示意图如图2所示。虚线为经过电源滤波器在电网侧出现的电流波形。该波形就是开关管工作在电流断续状态下产生的。在提升电感、TOPSwitch和提升二极管上的电流IL、IT、ID如图3所示。在这个电路中IL=IT+ID,IL的电流波形即为IT和ID电流波形的简单叠加,图4为平滑后的理想波形,图5为实际测试的波形。从图中可以看出,在固定周期的情况下,它的电流与正弦电流相差较大,经过补偿后的输入电流实际测试波形如图6所示。总谐波失真(THD)不超过18%,功率因数(PF)为0.978。
图1应用TOPSwitch设计的升压型PFC电路
图2流过提升电感的电流波形示意图
图3IL、IT、ID波形
图4理想波形
图5实测波形
图6经补偿后的实测电流波形
TOPSwitch各开关周期的平均值IT(avg)可用公式(1)和(2)计算出来。公式中T为一个工作周期,IPK为TOPSwitch峰值电流,Uin是各个开关周期整流后交流输入电压瞬时值,fS是开关频率,LP是自感系数。
IT=IPK(T/2)(1)
第N个开关周期二极管上电流平均值ID(avg)用公式(3)求出,UO为直流输出电压,
这两个平均电流之和为电感电流平均值IL(avg)。交流输入瞬时电压,要求一个平均电流值与其对应。这个平均电流值将被作为100kHz开关电流波形的平均值来校正,与其相应的,可采用随输入电压瞬时值调占空比D的方式,即预补偿" title="预补偿">预补偿。工作周期T可用公式(5)进行计算。
3预补偿原理
对MOSFET用恒频恒占空比控制方式的缺点,如图7所示,在一个开关周期内IL平均值不随整流后电压瞬时值线性变化,即:输入电压瞬时值上升后,平均值上升更快。这样经过电源滤波后,产生如图4所示的非正弦波形,为了使电流波形进一步正弦化,可以采用预补偿的方式,即采用恒频非恒占空比的控制方式。
产生这种结果的原因是:在TOPSwitch的整个工作过程中,提升电感上的电流是TOPSwitch上电流和提升二极管电流的代数和(见公式IL=IT+ID),TOPSwitch上的电流随着整流后的输入电压呈线性关系,平滑后是正弦电流。可是提升二极管上的电流随着输入电压的升高迅速上升,呈非线性关系,平滑后不是正弦电流。这样叠加的结果使提升电感上的电流就不是正弦的。因为提升二极管上的电流不受控,所以要想改善提升电感上电流波形,就只能通过控制IC改善TOPSwitch的电流波形,使TOPSwitch上的波形不是一个正弦波,来补偿提升二极管不是正弦波的缺陷。这个问题是很多无乘法器的控制IC在boost电路中普遍存在的问题,这些都可以通过预补偿的方式得以改善。改善的关键就是选择合适的预补偿电阻。
在输入高电压时减小IT的占空比,这样使得IL的波形就不再是像图4所示。经过补偿的电流波形如图6所示,这样IL的波形已经近似于正弦波,电路原理图如图8所示,通过预补偿电阻R1和直接输出电压检测电路控制流入TOPSwitch控制脚的电流,使TOPSwitch的调制方式变成恒频非恒占空比的方式,达到较为理想的PFC。占空比随瞬时输入电压变化呈线性关系,TOPSwitch具有电流线性控制占空比变换器,当流入TOPSwitch控制引脚的电流在2.0~6.0mA范围内增大时,TOPSwitch的占空比将从67%下降到1.7%,所以通过预补偿电阻来控制部分TOPSwitch控制引脚的电流来控制占空比。预补偿电阻的选择是很重要的(后文对预补偿电阻的选择有论述)。当整流后的电压最低时,TOPSwitch的控制引脚通过预补偿电阻R1泄放电流,使流入控制引脚的电流减小,这时TOPSwitch的占空比最大;随着整流后的输入电压的增高,流入TOPSwitch控制引脚的电流
图7预补偿前后TOPSwitch上的电流示意图
图8有预补偿的应用TOPSwitch的PFC电路原理图
也将逐渐增加,TOPSwitch的占空比逐渐减小,当输入电压达到最高时,TOPSwitch的占空比最小,这就完成了恒频非恒占空比的控制方式。在示意图图7中可以看出,预补偿以后,由于TOPSwitch上的电流减小了,使得在提升电感上的电流三角形的面积小于预补偿以前的,电流的平均值也就减小了,平滑后的电流波形也就接近正弦波形了,如图9所示。占空比随着瞬时输入电压的变化而变化。这时THD<7% , PF为 0.98。 4 元 器 件 的 选 择 与 参 数 计 算
(1)TOPSwitch的选择表(见下表)
型号 | PFC输出功率 | 型号 | PFC输出功率 |
---|---|---|---|
TOP221 | 0~25W | TOP225 | 45~100W |
TOP222 | 20~50W | TOP216 | 60~125W |
TOP223 | 30~75W | TOP227 | 75~150W |
(2)预补偿电阻R1的计算
可利用公式(6)进行计算预补偿电阻R1(kΩ)
R1=APWM/SDV(6)
式中APWM是TOPSwitch占空比控制电流增益,为百分之十几/mA(一般典型值为16%/mA),SDV是测试的交流整流后的输入电压与占空比直线的斜率,可定为SDV=-0.067%/V,预补偿电阻R1也可以通过曲线计算出来,直流输出电压曲线和预补偿电阻的关系如图10所示。
(3)电感线圈的计算
图9有预补偿平滑后的电流波形
图10预补偿电阻与直流输出电压的关系曲线
电感值在设计中是至关重要的,可以通过查曲线的方式得到电感值。电感值的曲线如图11所示。
图11提升电感值与输出功率、直流输出电压的关系曲线
5结论
150W以下的PFC在各项指标均接近的情况下,用TOPSwitch实现,只用17个元件;用UC3852实现为23个元件;用KA7524实现为27个元件。而且TOPSwitch的电感不需要辅助绕组,电路简单紧凑。