文献标识码:A
文章编号: 0258-7998(2010)10-0120-04
作为第二代生物认证技术,手指静脉识别技术是通过人体手指中静脉特征对人体身份进行鉴别的技术,具有很高的防伪性[1]。手指静脉识别的原理是:当近红外光线透过人体组织时,静脉血管中的血红蛋白对近红外光线有非常明显的吸收效果,从而使静脉血管以不同的灰度值表征在图像中。由于静脉血管分布的随机性,即使是双胞胎的手指静脉分布特征也不相同,因此可以将手指静脉识别技术作为身份认证技术。与指纹识别技术相比,手指静脉识别技术具有不受手指外界环境影响和安全性更高的优点。
日立公司已率先研制出用于身份验证的手指静脉识别系列产品。国内一些科研团队也已经先后设计出手指静脉采集的实验装置[2-3]。然而从这些文献中发现了一些不足: (1)成像设备直接采用成品的网路摄像头或高清CCD摄像机,不能由上位机采集软件直接且有效地控制成像效果和下位机硬件电路工作状态。(2)由于不同手指厚度不一致,当红外光以固定光强照射手指时,会形成一组亮度不均衡、甚至丢失静脉纹路的图像,为身份识别造成不必要的麻烦。为此,本文设计了一种成本较低、带有自动调光模块、基于USB2.0芯片与CMOS图像传感器的手指静脉图像采集系统。
1 采集系统硬件设计
为降低成本,没有采用FPGA或CPLD等可编程器件,但设计出结构更加简洁的图像采集硬件电路,主要部分由CMOS图像传感器模块、USB2.0控制器模块、自动调光模块、E2PROM和电源模块组成,如图1所示。
CMOS图像传感器与CCD图像传感器相比,具有成本低、功耗低、集成度高等优点。本设计选用拥有130 万像素的图像传感芯片OV9620。OV9620能自动提供帧同步信号VSYNC、行同步信号HREF和像素时钟PCLK[4]。为保证图像采集与上位机图像处理的实时性,设计中采用VGA 640×480模式,可以保证每秒30帧的动态图像。实际设计电路如图2所示。
EZ-USB FX2芯片CY7C68013是USB2.0控制器,拥有增强型8051内核,集成了智能串行接口引擎(SIE)、片上RAM、4 KB FIFO存储器,可独立于MCU,由硬件自动完成480 Mb/s高速数据传输功能[5]。既可以采用I2C总线把固件程序从E2PROM中下载到自身的RAM中执行,又可以读写OV9620寄存器,实现摄像头的自动曝光、增益控制及白平衡控制等功能。
设计中,采用波长为850 nm的近红外光源从手背一侧照射手指,静脉血液中的血红蛋白因吸收红外线而导致静脉部分的红外光透射较少,最终在手指另一侧的CMOS图像传感器上产生手指静脉纹路图案。当红外阵列光源的发光强度一定时,由于不同人、甚至每个人的不同手指的粗细都不一致,会导致透射红外光的强弱不同。例如,针对较粗手指形成较好的静脉图像(如图3(a))的光源,对较细手指却产生透射光过强的成像效果(如图3(b))。
针对这种情况,设计出如图4所示的红外发射光强自动调节电路模块,这是负反馈闭环控制系统。其实现过程为:先通过观察上位机图像处理软件实时接收到的图像,调节用于初始化设定的电位器旋钮,直到确认手指静脉图像达到最好效果时停止,系统将该电位器输出电压值作为标准值(Uin)。当不同的手指进行采集时,红外光接收电路将采集到的电流转换为电压值作为反馈值(U1),将反馈值与标准值比较,得到偏差电压值(Ue),通过积分调节器输出电压(Uout)控制红外光源,若偏差值小于0(反馈值大于标准值),则自动调高输出电压Uout直至透射光强达到稳态;若偏差值大于0,则自动调低输出电压Uout直至透射光强达到稳态。使红外发射光强随手指的厚度动态变化,让透射光始终保持在一个相对稳定的光强值,以保证成像效果均衡。
红外光强自动调节电路工作原理:红外接收传感器Q0的电流随接收的透射光强变化而变化,并作为三极管Q1基极电流,进而引起流经电阻R13的电流变化,因此UR13电压随接收光强电流变化而变化。
这样红外发射光强的电流就会随着接收光强而变化。通过多次实验,此光强自动调节电路能很好地对透过手指的红外光强度进行调节,并可获得清晰、质量稳定的手指静脉纹路图像(如图8所示)。
2 采集系统软件设计
采集系统的软件设计主要分为USB固件程序、USB驱动程序和上位机图像处理软件。
(1)固件程序采用标准的EZ-USB程序框架。根据需求,本系统固件的基本功能如下:
①通过IFCONFIG=0x43设置Slave FIFO模式,同步方式下SLWR作为IFCLK时钟引脚的使能信号,以保证行同步信号HREF有效时,才能接收图像的像素数据。
②配合硬件电路,通过设置EP2CFG=0xE0设置 EP2端口为BULK传输模式的IN端点,四重缓冲,每包字节数为1 024。并通过EP2FIFOCFG=0x08设置端口2为8位数据总线模式。
③在图像帧接收中断INT0处理函数中,为每一帧图像前加上特定的帧头[4],以便上位机应用程序可以准确和完整地分离出每一帧图像数据。在手指触发按键中断INT1处理函数中,设定手指触发的标识位,以便上位机程序在发送Vendor指令时,通过读取该标识位来决定是否自动保存采集的手指静脉图片。
(2)USB驱动程序直接利用EZ-USB开发包自带的驱动程序ezusbsys.c。为满足图像数据的实时接收需求,减少在应用程序中重复调用数据读取函数的时间开销,需要修改驱动程序的读取缓存设定值。本文设计如下:
#define TRANSSIZE 2048
…
for(j=0;j
interfaceObject->Pipes[j].MaximumTransferSize= (TRANSSIZE * 1024) - 1;
修改完USB驱动程序文件后,需要使用类似Windows XP DDK的软件重新编译ezusb.sys文件,执行命令build-c -z即可生成测试版本或发布版本。
另外将驱动程序的配置文件中生产商/销售商(PID/VID)代码和设备名更改为用户的设定。
(3)上位机图像处理软件接收到的图像数据是Bayer格式,如图5所示。要将Bayer格式数据显示为24位RGB彩色图像,颜色插值算法是关键技术。考虑到图像采集的实时性和静脉纹路特点,选择最邻近法、双线性算法、边缘导向法和适应性颜色层法[6]等四种插值算法进行对比研究。
从图6中可以看出,最邻近法因运算简单,只复制了邻近的相关颜色,所以导致边缘马赛克现象非常明显。双线性法明显优于最邻近法,采用了对相邻像素取平均的方法,但没有利用不同彩色分量之间的关系,所以导致图像的边缘引进大量的错误数据造成图像边缘模糊现象。边缘导向法仅是对人眼较敏感的G分量进行了沿边缘的插值方法,效果优于最邻近法,但边缘模糊现象也比较严重。而适应性颜色层法对R、G、B等三种颜色分量都进行了沿边缘的插值方法,恢复的图像效果最好,锐化了图像边缘,提高了视觉质量。因此本系统采用适应性颜色层法采集手指静脉的纹路图像。
3 实验结果
本文设计的手指静脉采集系统的上位机图像处理软件如图7所示。在自动调光功能条件下,采集的手指静脉图像如图8所示。
本文介绍了带有自动调光模块,并基于EZ-USB FX2和CMOS图像传感器的手指静脉系统,不仅能够实现针对不同厚度手指,动态调整红外发射光强度,以保证手指静脉图像质量稳定,避免了曝光过强或过弱现象,而且通过采用适应性颜色层插值算法还原图像数据,保证了手指静脉图像纹路清晰,而且在VGA(分辨率640×480)模式下能够以30帧/s的视频形式显示。
参考文献
[1] 苑玮琦,柯丽,白云.生物特征识别技术[M].北京:科学出版社,2009.
[2] 王科俊,袁智.基于小波矩融合PCA变换的手指静脉识别[J].模式识别与人工智能,2007,20(5):692-697.
[3] MULYONO D, JINN H S. A study of finger vein biometric for personal identification[C]. 2008 International Symposium on Biometrics and Security Technologies (ISBAST′08), 2008:136-143.
[4] 周颖慧,夏丽娟.基于CMOS和USB2.0的人脸检测系统[J].电子器件,2009,32(2):258-261.
[5] 王科俊,张晓雷.基于CMOS传感器多功能USB图像采集平台[J].微计算机信息,2008,24(31):130-131.
[6] 贺钦,刘文予.数字图像传感器颜色插值算法研究[J].小型微型计算机系统,2007,8(8):1482-1485.