kaiyun官方注册
您所在的位置: 首页> 模拟设计> 设计应用> 基于深度学习技术的水稻环境因素产量预测
基于深度学习技术的水稻环境因素产量预测
电子技术应用
张春磊1,2,3,李颜娥1,2,3,丁煜1,2,3,罗煦钦4
1.浙江农林大学 数学与计算机学院;2.浙江省林业智能监测与信息技术实验室; 3.林业感知技术与智能装备国家林业局重点实验室; 4.杭州市临安区农业农村信息服务中心
摘要:水稻作为全球重要的粮食作物,准确预测水稻产量在农业发展中起着重要作用。由于水稻在环境因子与其生长机理的作用下往往呈现出非线性的特点,难以对其做出较为准确的预测,因此,提出CE-CGRU水稻产量预测模型,对非线性环境因子Copula熵(CE)方法进行提取特征并与CNN和GRU技术结合在一起。其目的是在水稻品种确定的条件下,识别产量预测的重要特征。根据使用浙江省临安区真实数据分析和比较所提出的模型的性能,构建了其他5个产量预测模型进行对比,分别是MLR、RF、LSTM、GRU和CNN-LSTM。结果显示,CE-CGRU模型的MAE、MSE和MAPE分别为0.677、0.87和5.029%,表明CE-CGRU模型具有更好的能力来捕捉水稻产量与环境因素之间的复杂非线性关系。此外,还对不同的特征选择方法以及不同时间步长进行了比较和分析。
中图分类号:TP18 文献标志码:A DOI: 10.16157/j.issn.0258-7998.234657
中文引用格式:张春磊,李颜娥,丁煜,等. 基于深度学习技术的水稻环境因素产量预测[J]. 电子技术应用,2024,50(4):81-86.
英文引用格式:Zhang Chunlei,Li Yan′e,Ding Yu,et al. Prediction of rice yield with environmental factors based on deep learning technology[J]. Application of Electronic Technique,2024,50(4):81-86.
Prediction of rice yield with environmental factors based on deep learning technology
Zhang Chunlei1,2,3,Li Yan′e1,2,3,Ding Yu1,2,3,Luo Xuqin4
1.College of Mathematics and Computer Science, Zhejiang A&F University; 2.Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province; 3.China Key Laboratory of State Forestry and Grassland Administration on Forestry Sensing Technology and Intelligent Equipment; 4.Hangzhou Lin'an District Agricultural and Rural Information Service Center
Abstract:Rice is a globally important staple crop, and the accurate prediction of rice yield plays a significant role in agricultural development. Due to the influence of external environmental factors and the growth mechanisms of rice, rice yield often exhibits nonlinear characteristics, making it challenging to make precise predictions. Therefore, the CE-CGRU rice yield prediction model is proposed, which extracts features using the Copula Entropy (CE) method for nonlinear environmental factors and combines them with CNN and GRU technologies. The aim is to identify crucial features for yield prediction under specific rice varieties.Based on the analysis and performance comparison using real data from Lin'an District of Zhejiang Province, the proposed model is compared to five other yield prediction models: MLR, RF, LSTM, GRU, and CNN-LSTM. The results indicate that the CE-CGRU model achieves a MAE of 0.677, a MSE of 0.87, and a MAPE of 5.029%, demonstrating its superior capability in capturing the complex nonlinear relationship between rice yield and environmental factors. Furthermore, a comparison and analysis of different feature selection methods and time steps are conducted.
Key words :rice yield prediction;Copula Entropy;deep learning;CE-CGRU

引言

作为世界三大主要粮食作物之一,水稻产量显著影响农业生产结果,并与社会和农业发展有广泛的联系[1]。因此,在当前强大的农业信息技术时代,准确预测水稻产量在随后的经济发展、解决粮食安全问题和调整农业政策方面发挥着关键作用。水稻的栽培不仅受到品种本身特性的影响,还受到诸如温度、湿度、日照时数等多种环境因素的影响,这使得构建反映这些因素与作物产量之间复杂关系的准确模型成为一项挑战。对于特定品种的水稻,其产量主要受到环境因素和一致的管理水平的影响。因此,建立一个具有水稻生长季环境因素的准确的水稻产量预测模型至关重要。


本文详细内容请下载:

http://www.chinaaet.com/resource/share/2000005953


作者信息:

张春磊1,2,3,李颜娥1,2,3,丁煜1,2,3,罗煦钦4

(1.浙江农林大学 数学与计算机学院,浙江 杭州 311300;2.浙江省林业智能监测与信息技术实验室, 浙江 杭州 311300;

3.林业感知技术与智能装备国家林业局重点实验室, 浙江 杭州 311300;

4.杭州市临安区农业农村信息服务中心, 浙江 杭州 310000)


Magazine.Subscription.jpg

此内容为AET网站原创,未经授权禁止转载。
Baidu
map