kaiyun官方注册
您所在的位置: 首页> 人工智能> 设计应用> 简化退化模型的真实图像超分辨率网络
简化退化模型的真实图像超分辨率网络
网络安全与数据治理
林旭锋,吴丽君
福州大学物理与信息工程学院
摘要:图像超分辨率任务常用双三次下采样以构造数据集训练网络,但双三次下采样由于退化模型固定,导致网络泛化能力低,无法用于真实世界低分辨率图像。为解决上述问题本文提出预处理模块,通过预处理模块与双三次下采样数据集得到的网络相结合,在减少资源消耗的同时提高其泛化能力。此外,还针对不同的精度需求设计了特征学习训练策略和多任务联调策略。通过根据不同需求采用相应的训练策略,在满足精度需求的同时具有消耗计算资源少、训练速度快以及适用范围广的特点。实验证明,增加预处理模块的网络以较少的模型参数增加量换取了重建效果和感知质量方面的较大提升,并且通过不同策略实现了进一步的精度提高。
中图分类号:TP391 文献标识码:ADOI:10.19358/j.issn.2097-1788.2024.03.006
引用格式:林旭锋,吴丽君.简化退化模型的真实图像超分辨率网络[J].网络安全与数据治理,2024,43(3):34-39.
Real image super resolution network for simplifying the degradation model
Lin Xufeng,Wu Lijun
College of Physics and Information Engineering, Fuzhou University
Abstract:In the task of image super resolution, bicubic down sampling is commonly used to construct datasets for training networks. However, due to the fixed degradation model, bicubic down sampling results in low generalization ability of the network and cannot be used for real world low resolution images. To address this problem, this paper proposes a preprocessing module that combines with the network obtained from the bicubic down sampling dataset to improve its generalization ability while reducing resource consumption. In addition, this paper also designs feature learning training strategies and multi task joint training strategies for different accuracy requirements. By adopting corresponding training strategies according to different requirements, it can meet the accuracy requirements while having the characteristics of low computational resource consumption, fast training speed, and wide applicability. Experiments have shown that adding a network with a preprocessing module can achieve greater improvements in reconstruction effect and perceptual quality with less model parameter increase, and further improve accuracy through different strategies.
Key words :super resolution; preprocessing module; multi task learning; computer vision

引言

单图像超分辨率(Single Image Super Resolution,SISR)旨在从低分辨率(Low Resolution,LR)图像恢复高分辨率 (High Resolution,HR)图像。在训练SISR的网络时,人们常使用二三次下采样生成超分辨率数据集从而使网络学习到相应的退化模型,进而恢复图像高频分量。但实际低质量图像的形成有两大主因:成像设备性能以及环境因素干扰,这与二三次下采样生成的低质量图像在退化模型上会有较大出入。学者通过构造数据集,将真实的LR HR数据集应用于超分辨率网络的训练,使超分网络能更好地应用于真实的低分辨率图像。例如利用不同的拍摄器材或调整参数构造LR HR数据集[1-5]以及利用生成对抗模型生成更接近于真实场景的LR HR数据集[6]。如图1所示,与利用二三次下采样得到的数据集不同,真实世界低分辨率数据集的退化模型复杂度较高,并且不同的设备型号以及不同的参数设置均会导致退化模型发生变化。而利用二三次下采样得到的数据集则具有较为固定的退化模型,仅在图像的高频分量产生退化,而低频分量则与原图近似。


本文详细内容请下载:

https://www.chinaaet.com/resource/share/2000005932


作者信息:

林旭锋,吴丽君

福州大学物理与信息工程学院,福建福州350108


杂志订阅.jpg

此内容为AET网站原创,未经授权禁止转载。
Baidu
map