kaiyun官方注册
您所在的位置: 首页> 测试测量> 设计应用> 面向多维数据的异常点检测模型设计*
面向多维数据的异常点检测模型设计*
网络安全与数据治理 7期
马勇,杨敏,朱琳
(1.内蒙古科技大学包头医学院网络信息中心,内蒙古包头014040; 2.内蒙古科技大学包头医学院教务处,内蒙古包头014040)
摘要:为了在大数据环境下快速、精准地挖掘异常点,保障网络安全,提出了一种面向多维数据的异常点检测模型设计方案。该方案利用长短期记忆网络(LSTM)存储任意时间段的多维数据,并使用图卷积网络提取完整数据结构,同时加入惩罚参数和均方误差来缩小异常点出现范围。此外,还利用编码器和解码器构建变分自编码器函数模型,使其能够解读正常数据子特征,并通过编码重建损失函数来计算数据异常度量,从而实现异常点检测。经过实验验证,该方法表现出较高的检测正确率和运行效率,具有极高的应用价值。
中图分类号:TP995
文献标识码:A
DOI:10.19358/j.issn.2097-1788.2023.07.014
引用格式:马勇,杨敏,朱琳.面向多维数据的异常点检测模型设计[J].网络安全与数据治理,2023,42(7):85-90.
Design of outlier detection model for multidimensional data
Ma Yong,Yang Min,Zhu Lin
1Network Information Center Inner Mongolia University of Science and Technology Baotou Medical College, Baotou 014040, China; 2Dean′s Office Inner Mongolia University of Science and Technology Baotou Medical College, Baotou 014040,China)
Abstract:In order to quickly and accurately mine outliers in the big data environment and ensure network security, we propose a design scheme for multidimensional data oriented outlier detection model. In this scheme, the long short memory network (LSTM) is used to store multidimensional data in any period of time, and the graph convolution network is used to extract the complete data structure. At the same time, penalty parameters and mean square error are added to narrow the range of outliers. In addition, we also use the encoder and decoder to build a variational self encoder function model, so that it can interpret the normal data sub features, and calculate the data anomaly measurement through the coding reconstruction loss function, so as to achieve outlier detection. After experimental verification, this method exhibits high detection accuracy and operational efficiency, and has high application value.
Key words :coding loss function; variational self encoder; abnormal point detection; long and short term memory network; multidimensional data

0 引言

针对目前异常数据检测方法占用空间内存大,且异常点漏检率与误检率高问题[1],建立一种面向多维数据异常点挖掘方法是很有必要的,建立的方法必须要保证在实际数据异常点检测过程中,既能够快速响应,又能缩小异常检测范围、降低异常检测错误率,这是一个很具有挑战性的问题。




本文详细内容请下载:https://www.chinaaet.com/resource/share/2000005426




作者信息:

马勇,杨敏,朱琳

(1.内蒙古科技大学包头医学院网络信息中心,内蒙古包头014040;2.内蒙古科技大学包头医学院教务处,内蒙古包头014040)

微信图片_20210517164139.jpg

此内容为AET网站原创,未经授权禁止转载。
Baidu
map