kaiyun官方注册
您所在的位置: 首页> 其他> 设计应用> 基于信道容量的协同探测资源联合优化方法
基于信道容量的协同探测资源联合优化方法
2022年电子技术应用第9期
罗 菁1,2,梁前超1
1.海军工程大学,湖北 武汉430019;2.空军预警学院,湖北 武汉430019
摘要:针对空间感知中的协同探测任务,利用探测信道容量作为优化目标,对蜂群算法进行改进并实现对集群轨迹与动力的联合优化。首先构建了多发多收协同探测模型,基于信息论的视角,推导出探测模型的信道容量,将其作为优化无人集群动力与辐射功率的目标函数,然后逐个分析并梳理出影响与制约目标函数的因素,从而明晰了优化目标与约束条件。接着针对蜂群算法的不足,改进其搜索策略与参数优化方法。进而构建了基于改机蜂群算法的协同探测动力优化流程。最后通过仿真验证与算法对比,表明本文算法能够提升无人机集群协同探测的感知能力。
中图分类号:TN97
文献标识码:A
DOI:10.16157/j.issn.0258-7998.222996
中文引用格式:罗菁,梁前超. 基于信道容量的协同探测资源联合优化方法[J].电子技术应用,2022,48(9):13-21.
英文引用格式:Luo Jing,Liang Qianchao. A joint optimization method for cooperative detection resources based on channel capacity[J]. Application of Electronic Technique,2022,48(9):13-21.
A joint optimization method for cooperative detection resources based on channel capacity
Luo Jing1,2,Liang Qianchao1
1.Naval University of Engineering,Wuhan 430033,China;2.Air Force Early Warning Academy,Wuhan 430019,China
Abstract:Aiming at the cooperative detection task in spatial perception, using the detection channel capacity as the optimization target, the bee colony algorithm is improved and the joint optimization of the swarm trajectory and power is realized. Firstly, a multi-transmit and multi-receive cooperative detection model is constructed. Based on the perspective of information theory, the channel capacity of the detection model is deduced and used as the objective function for optimizing the power and radiation power of unmanned clusters. The factors that affect and constrain the objective function are analyzed and sort out one by one, so as to clarify the optimization objectives and constraints. Then, aiming at the shortcomings of the bee colony algorithm, its search strategy and parameter optimization method are improved. Furthermore, a dynamic optimization process of collaborative detection based on the modified bee colony algorithm is constructed. Finally, through simulation verification and algorithm comparison, it shows that the algorithm in this paper can improve the perception ability of UAV swarm cooperative detection.
Key words :UAV swarm;cooperative detection;channel capacity;joint optimization;artificial bee colony algorithm

0 引言

“知己知彼,百战不殆”,这是所有从事军事研究人员的共识,在未来战场中,体现为实现战场的单向透明性,即我方能够掌握敌方动态,而敌方难以了解我方状态,从而实现先敌发现、先敌决策、先敌行动,掌握战场的主动权[1-3]。这就要求我方具有明显优于敌方的态势感知能力,这种感知不仅局限于时刻的空间位置感知,还要求实现包括电磁维度与能量维度的跨域感知,与对敌方全域的预测,从而识别与预判对手的意图,便于决策与行动。随着无人技术与信息技术的迅猛发展,无人平台能力逐步提升,甚至在某些军事领域已经出现了超越人的状态与趋势[4-6]。尤其是无人机集群[7-10]因其数量效应与规模效应,已经涌现出单体平台不具备的功能,已然成为未来战场的主要作战平台与对抗样式。

无人机集群具有良好的群体分布式优势,能够灵活地调整自身空间位置,以实现分布式的方式提升对战场态势的感知能力,而如何优化调整无人机集群的探测资源,已然成为制约无人机集群协同探测性能的瓶颈。




本文详细内容请下载:http://www.chinaaet.com/resource/share/2000004914




作者信息:

罗 菁1,2,梁前超1

(1.海军工程大学,湖北 武汉430019;2.空军预警学院,湖北 武汉430019)




wd.jpg

此内容为AET网站原创,未经授权禁止转载。
Baidu
map