基于负载预测的车联网信道拥塞控制策略
2022年电子技术应用第3期
杨 戈1,2,朱永豪1
1.北京师范大学珠海分校 智能多媒体技术重点实验室,广东 珠海519087; 2.北京师范大学自然科学高等研究院,广东 珠海519087
摘要: 在车联网中,过高的车辆密度会造成信道拥塞,信道拥塞的发生会严重影响协同车辆安全系统的性能。针对此问题,设计实现了一种基于车联网信道负载预测的拥塞控制策略(Congestion Control Strategy based on Channel Load Prediction,C2SLP)。该策略分为3个模块,首先使用载波侦听多址访问协议中的检测功能获取信道闲忙状态进行负载评估,然后将所得结果代入自回归移动平均模型(Auto Regressive Integrated Moving Average,ARIMA)对下一时刻的信道负载值进行预测,最后将所得负载预测值与预设的标准值进行比较,根据对比结果使用功率控制算法调整传输功率,实现提前避免信道拥塞。仿真实验结果表明,C2SLP将信道占有率稳定在0.6左右,传输时延稳定在30 ms左右,明显优于UBRCC算法,C2SLP在控制信道拥塞的同时有效减少传输时延,确保数据包可靠发送,满足车辆安全应用需求。
中图分类号: TN915.03
文献标识码: A
DOI:10.16157/j.issn.0258-7998.211996
中文引用格式: 杨戈,朱永豪. 基于负载预测的车联网信道拥塞控制策略[J].电子技术应用,2022,48(3):64-67,72.
英文引用格式: Yang Ge,Zhu Yonghao. Congestion control strategy of VANET channel based on load prediction[J]. Application of Electronic Technique,2022,48(3):64-67,72.
文献标识码: A
DOI:10.16157/j.issn.0258-7998.211996
中文引用格式: 杨戈,朱永豪. 基于负载预测的车联网信道拥塞控制策略[J].电子技术应用,2022,48(3):64-67,72.
英文引用格式: Yang Ge,Zhu Yonghao. Congestion control strategy of VANET channel based on load prediction[J]. Application of Electronic Technique,2022,48(3):64-67,72.
Congestion control strategy of VANET channel based on load prediction
Yang Ge1,2,Zhu Yonghao1
1.Key Laboratory of Intelligent Multimedia Technology,Beijing Normal University(Zhuhai Campus),Zhuhai 519087,China; 2.Advanced Institute of Natural Sciences, Beijing Normal University,Zhuhai 519087,China
Abstract: In the VANET, excessively high vehicle density will cause channel congestion, and the occurrence of channel congestion will seriously affect the performance of the cooperative vehicle safety system. Aiming at this problem, a C2SLP congestion control strategy based on the prediction of vehicle network channel load is designed. The strategy is divided into three steps. Firstly, use the detection function in the carrier-sensing multiple access protocol to obtain the busy and busy status of the channel, and perform load evaluation according to the proportion of the busy time of the channel. Then the obtained results are substituted into the autoregressive moving average model to predict the next channel load value at the moment. Finally the obtained load prediction value is compared with the preset standard value, and the power control algorithm is used to adjust the transmission power according to the comparison result to avoid channel congestion in advance. The simulation experiment results show that this strategy can stabilize the channel occupancy at about 0.6 and the transmission delay at about 30 ms. Compared with the UBRCC algorithm,this strategy can effectively reduce the transmission delay while controlling channel congestion, ensure the reliable transmission of data packets, and meet the requirements of vehicle safety applications.
Key words : VANET;load evaluation;load forecasting;power control
0 引言
近年来我国汽车总量持续增加,社会急需建立基于车联网的新型智能交通管理系统。智能交通管理系统能够对当前道路交通状况进行实时监控,对道路车辆进行交通疏导,保证车辆驾驶员的行车安全。
目前,5G网络基本实现了全面部署,VANET(Vehicle Ad hoc Network)车联网成为了各国家重点发展方向。2020年,欧盟、美国、俄罗斯等都将车联网发展作为国家重点扶持项目,将车联网全面部署作为国家重大目标。同样地,我国也已经将车联网作为国家重点发展项目进行研究和推进,正在重点发展车联网的自动驾驶技术和辅助驾驶技术产业化的研究[1-7]。
本文详细内容请下载:http://www.chinaaet.com/resource/share/2000004005。
作者信息:
杨 戈1,2,朱永豪1
(1.北京师范大学珠海分校 智能多媒体技术重点实验室,广东 珠海519087;
2.北京师范大学自然科学高等研究院,广东 珠海519087)
此内容为AET网站原创,未经授权禁止转载。