基于多尺度网络的绝缘子自曝状态智能认知方法研究
2021年电子技术应用第8期
万 涛1,吴立刚1,陆 烨2,王 浩2,张 潇2,范叶平1,杨德胜1
1.国网信息通信产业集团安徽继远软件有限公司,安徽 合肥230088; 2.国网江苏省电力公司徐州供电分公司,江苏 徐州221005
摘要:针对已有绝缘子状态识别模型,以及深层网络尺度和交叉熵损失函数的缺陷,仿照运维人员检修模式,即依据评测结果的可信度动态决策,基于多尺度网络构建了一种绝缘子自曝状态智能认知方法。首先,面向定位归一化化预处理后的绝缘子图像,基于ResNet-18增加不同结构的网络分支提高网络适应不同分辨率的能力,同时在网络末端添加多尺度信息融合模块;其次,随机配置网络面向多个尺度特征,构建了泛化的自曝状态分类认知准则;最后,为了评测自曝状态分类认知结果的可信度,基于定义的误差指标自调节多尺度网络架构,重构不确定认知结果约束下的特征向量和分类认知准则,以进行自曝状态再认知。实验结果显示,与其他方法相比,所提出的智能认知方法增强了模型的泛化能力和认知精度。
中图分类号:TP391
文献标识码:A
DOI:10.16157/j.issn.0258-7998.200223
中文引用格式:万涛,吴立刚,陆烨,等. 基于多尺度网络的绝缘子自曝状态智能认知方法研究[J].电子技术应用,2021,47(8):91-96.
英文引用格式:Wan Tao,Wu Ligang,Lu Ye,et al. Research on intelligent cognition method of insulator self-blast state based on multi-scale network[J]. Application of Electronic Technique,2021,47(8):91-96.
文献标识码:A
DOI:10.16157/j.issn.0258-7998.200223
中文引用格式:万涛,吴立刚,陆烨,等. 基于多尺度网络的绝缘子自曝状态智能认知方法研究[J].电子技术应用,2021,47(8):91-96.
英文引用格式:Wan Tao,Wu Ligang,Lu Ye,et al. Research on intelligent cognition method of insulator self-blast state based on multi-scale network[J]. Application of Electronic Technique,2021,47(8):91-96.
Research on intelligent cognition method of insulator self-blast state based on multi-scale network
Wan Tao1,Wu Ligang1,Lu Ye2,Wang Hao2,Zhang Xiao2,Fan Yeping1,Yang Desheng1
1.Anhui Jiyuan Software Co.,Ltd.,State Grid Communication Industry Group Co.,Ltd.,Hefei 230088,China; 2.State Grid Xuzhou Electric Power Supply Company,Xuzhou 221005,China
Abstract:In view of the drawbacks of the existing insulator state recognition models, and the scale and softmax loss function of deep network, imitating the mode of personnel operation and maintenance, that is, dynamic decision-making based on the credibility of the evaluation results, this paper constructs an intelligent cognition method of insulator self-blast states based on the multi-scale network. Firstly, for the pre-processed insulator images with localization and normalization, based on ResNet-18, branches with different network structure are added to improve the network ability to adapt to different resolutions. At the same time, the multi-scale information fusion module is added at the end of the network. Secondly, facing multiple scale features, stochastic configuration network(SCN) constructs a generalized cognition criterion of self-blast state classification. Finally, in order to evaluate the credibility of the self-blast state cognition result, based on the defined error index, the multi-scale network architecture is self-adjusted to reconstruct the feature vector and classification cognition criterion under the constraint of the uncertain cognition result, which carries out the self-blast state renewal cognition.The experimental results show that the proposed intelligent cognition method enhances the generalization ability and cognition accuracy compared with other methods.
Key words :insulator state;ResNet;feedback cognition;multi-resolution;multi-scale
0 引言
绝缘子作为输电电路中的重要器件,被安装在非等电位或导体与接地器件之间,其自爆与否会严重影响输电线路的安全[1-3]。现代输电线路运维检修机制通常基于直升机或无人机按照预定轨迹拍摄的视频,由人对每帧图像进行自爆绝缘子位置辨识。然而,人的主观因素,以及运维成本和复杂环境的客观因素,使得现代输电线路运维检修模式费时耗力。因此,亟待研究绝缘子自曝状态的智能认知方法。
本文详细内容请下载:http://www.chinaaet.com/resource/share/2000003708。
作者信息:
万 涛1,吴立刚1,陆 烨2,王 浩2,张 潇2,范叶平1,杨德胜1
(1.国网信息通信产业集团安徽继远软件有限公司,安徽 合肥230088;
2.国网江苏省电力公司徐州供电分公司,江苏 徐州221005)
此内容为AET网站原创,未经授权禁止转载。