基于ReliefF-DDC特征选择算法的非侵入式负荷识别研究
2021年电子技术应用第7期
邵 琪1,包永强2,姜家辉1,张旭旭1
1.南京工程学院 电力工程学院,江苏 南京211167;2.南京工程学院 信息与通信工程学院,江苏 南京211167
摘要:提取有效的负荷运行数据特征对于提高非侵入式负荷识别的精度具有重要作用。针对数据特征选择欠佳导致负荷识别准确率不高的问题,提出了一种基于ReliefF-DDC特征选择算法,用于降低特征维数减少复杂度,改善负荷识别效果。首先,利用ReliefF算法分析各特征与类别的关系计算特征权重,筛选无关特征;其次,利用DDC算法计算特征之间与类别的互信息分析相关性,根据特征子集评价度量删除冗余特征;最后,采用孪生支持向量机(TWSVM)作分类器进行负荷识别。实验表明,所提出的算法在提升分类效果的同时减少了运行时间。
中图分类号:TN911;TM714
文献标识码:A
DOI:10.16157/j.issn.0258-7998.200524
中文引用格式:邵琪,包永强,姜家辉,等. 基于ReliefF-DDC特征选择算法的非侵入式负荷识别研究[J].电子技术应用,2021,47(7):74-77,82.
英文引用格式:Shao Qi,Bao Yongqiang,Jiang Jiahui,et al. Research on non-intrusive load identification based on ReliefF-DDC feature selection algorithm[J]. Application of Electronic Technique,2021,47(7):74-77,82.
文献标识码:A
DOI:10.16157/j.issn.0258-7998.200524
中文引用格式:邵琪,包永强,姜家辉,等. 基于ReliefF-DDC特征选择算法的非侵入式负荷识别研究[J].电子技术应用,2021,47(7):74-77,82.
英文引用格式:Shao Qi,Bao Yongqiang,Jiang Jiahui,et al. Research on non-intrusive load identification based on ReliefF-DDC feature selection algorithm[J]. Application of Electronic Technique,2021,47(7):74-77,82.
Research on non-intrusive load identification based on ReliefF-DDC feature selection algorithm
Shao Qi1,Bao Yongqiang2,Jiang Jiahui1,Zhang Xuxu1
1.School of Electrical Engineering,Nanjing Institute of Technology,Nanjing 211167,China; 2.School of Information and Communication Engineering,Nanjing Institute of Technology,Nanjing 211167,China
Abstract:Extracting effective characteristics of load operation data plays an important role in improving the accuracy of non-intrusive load identification.In this paper, a ReliefF-DDC feature selection algorithm was proposed to reduce feature dimension, reduce complexity and improve load recognition.Firstly, ReliefF algorithm was used to analyze the relationship between each feature and category, calculate feature weight, and screen irrelevant features.Secondly, DDC algorithm is used to calculate the mutual information analysis correlation between features and categories, and redundant features are removed according to feature subset evaluation measurement. Finally, twin support vector machine(TWSVM) is used as classifier for load recognition. Experiments show that the algorithm proposed in this paper improves the classification effect and reduces the running time.
Key words :ReliefF;DDC;TWSVM; feature selection; load identification
0 引言
非侵入式负荷监测法(Non-Intrusive Load Monitoring,NILM)为实现智能电网和用户之间的互动提供了数据支持,该方法在接户线入口处安装传感器,采集总负荷的电压、电流等电气量数据进行分析,细化系统数据,从而辨识家用电器的类别及运行状态[1]。相比于侵入式负荷监测法(Intrusive Load Monitoring,ILM),NILM具有成本低、用户接受度高、后期维护方便等优势,但是该方法对于负荷分解算法的要求较高。特征提取和负荷识别作为NILM中两大关键技术[2],为NILM的发展提供了强有力的技术支持。特征选择作为处理已提取特征的重要手段,是目前研究的热点之一。
本文详细内容请下载:http://www.chinaaet.com/resource/share/2000003659。
作者信息:
邵 琪1,包永强2,姜家辉1,张旭旭1
(1.南京工程学院 电力工程学院,江苏 南京211167;2.南京工程学院 信息与通信工程学院,江苏 南京211167)
此内容为AET网站原创,未经授权禁止转载。