文献标识码:A
DOI:10.16157/j.issn.0258-7998.200300
中文引用格式:蔡爵嵩,严迎建,朱春生,等. 基于聚类的密码芯片频域侧信道分析[J].电子技术应用,2021,47(3):61-64,70.
英文引用格式:Cai Juesong,Yan Yingjian,Zhu Chunsheng,et al. Side-channel analysis in frequency domain with clustering[J]. Application of Electronic Technique,2021,47(3):61-64,70.
0 引言
侧信道分析(Side-channel Analysis,SCA)是一种不仅利用算法本身,更依赖于密码算法物理实现中的侧信道泄漏的分析方法,严重威胁到密码芯片的安全性。能量分析是一种最流行的侧信道分析方式,包括简单能量分析(Simple Power Analysis,SPA)[1]、差分能量分析(Differential Power Analysis,DPA)[2]、模板攻击(Template Attacks,TA)[3]、相关能量分析(Correlation Power Analysis,CPA)[4]等。现有文献主要是针对密码芯片的能量消耗在时域上进行分析。但时域分析有一定的局限性,如能量迹的对齐问题。通常采集设备的不稳定或者芯片加入时钟随机化防护措施,都会导致能量迹需要进行对齐处理。因此,能量迹的对齐成为影响侧信道分析成功率的关键因素之一。
密码芯片有效信号的频率由时钟频率决定,不会受到采集设备和手段的影响,所以使用有效信号的频率能量大小代替能量迹采样点的功耗大小作为密钥的特征是可行的。2000年,AIGNER M等人表示在对密码芯片侧信道分析中,时域内的能量消耗差异在频域内同样会体现出来[5]。2005年,GEBOTYS C H等人在CHES会议上通过对电磁信号的频域进行分析首次验证了频域侧信道分析的可行性[6]。近年来,将能量迹转换到频域进行侧信道分析已经被证明是一种解决能量迹对齐问题的有效途径[7-9]。虽然频域侧信道分析能够解决时域侧信道分析的对齐问题,但由于噪声频率可能与有效信号频率相同或相近,因此频域侧信道分析通常需要更多的能量迹,如文献[7]采集了70 000条能量迹,文献[8]采集了10 000条能量迹。
文献[10]~[14]表明将机器学习引入侧信道分析,能够有效找到能量迹上的特征点,提高侧信道分析的成功率。2017年,ZHANG R N等人[14]直接使用机器学习中的无监督学习算法k-means对时域内的能量迹进行了分析,并成功获得其密钥。本文将机器学习中的聚类算法引入频域侧信道分析中,寻找信号频率内在的分布,对有效信号频率进行分离,从而减少频域侧信道分析所用能量迹条数。
本文详细内容请下载:http://www.chinaaet.com/resource/share/2000003422
作者信息:
蔡爵嵩,严迎建,朱春生,郭朋飞
(战略支援部队信息工程大学,河南 郑州450002)