数字图像处理在桥梁结构变形检测的应用研究
信息技术与网络安全
柳胜超,王夏黎,张 琪,赵嘉兴
(长安大学 信息工程学院,陕西 西安710064)
摘要:针对大型桥梁在施工阶段和运营期间发生结构变形问题,目前缺乏自动化、高频、实时与长期并且精确的检测手段。在数字图像处理与深度学习理论基础下,提出一种适用于大型桥梁结构变形的非接触式检测方法,并以此方法研发系统,可以对桥梁多个目标结构进行同步动态监测。该方法首先通过高分辨率摄影设备获取桥梁结构的动态视频序列图像;其次对图像进行预处理去除天气等外部因素对图像的影响;然后提取图像ROI确定待处理的具体桥梁结构部位;最后对深度学习中YOLOv3算法进行改进并结合改进后的SURF算法实现桥梁结构的变形检测。实验结果表明,算法检测速度在20~30 f/s之间,目标距离100 m时,算法检测精度在0.3 mm以内,检测精度高,可有效反映桥梁结构变形情况。
中图分类号:TP391.41
文献标识码:A
DOI:10.19358/j.issn.2096-5133.2021.02.005
引用格式: 柳胜超,王夏黎,张琪,等. 数字图像处理在桥梁结构变形检测的应用研究[J].信息技术与网络安全,2021,40(2):24-32.
文献标识码:A
DOI:10.19358/j.issn.2096-5133.2021.02.005
引用格式: 柳胜超,王夏黎,张琪,等. 数字图像处理在桥梁结构变形检测的应用研究[J].信息技术与网络安全,2021,40(2):24-32.
Application research of digital image processing in deformation detection of bridge structures
Liu Shengchao,Wang Xiali,Zhang Qi,Zhao Jiaxing
(School of Information Engineering,Chang′an University,Xi′an 710064,China)
Abstract:In view of the structural deformation of large bridges during construction and operation, there is currently a lack of automated, high-frequency, real-time, long-term and accurate detection methods. Based on the theory of digital image processing and deep learning, this paper proposes a non-contact detection method suitable for large-scale bridge structure deformation, and uses this method to develop a system that can simultaneously dynamically monitor multiple target structures of the bridge. This method firstly obtains dynamic video sequence images of the bridge structure through high-resolution photography equipment; secondly, it preprocesses the image to remove the influence of external factors such as weather on the image; then it extracts the image ROI to determine the specific bridge structure to be processed; finally, the YOLOv3 algorithm is improved and combined with the improved SURF algorithm to realize the deformation detection of the bridge structure. Experimental results show that the detection speed of the algorithm is between 20 fps and 30 fps, when the target distance is 100 m, the detection accuracy of the algorithm is within 0.3 mm, and the detection accuracy is high, which effectively reflects the deformation of the bridge structure.
Key words :software engineering;bridge structure deformation;digital image processing;remote detection;deep learning;SURF algorithm
0 引言
桥梁在陆路交通中属于一种特殊的道路结构,是日常生活的基础设施之一。自古至今,桥梁作为交通枢纽中较为重要的一环,其安全性一直是人们关注的焦点。桥梁安全性主要分为建设安全性与使用安全性。基于各种因素,桥梁在施工与运营期间会出现结构变形[1-2],桥梁变形程度能够直接反映出桥梁的健康状况。随着国民经济的日益增长和近现代交通技术的不断发展,桥梁的体积越来越大,桥梁结构越来越复杂,桥梁的应用环境越来越多样。因此在桥梁建设过程中,如何实时地检测桥梁的变形程度,以确保桥梁工程的安全就成为桥梁建设的一项重要技术。
本文详细内容请下载:http://www.chinaaet.com/resource/share/2000003375
作者信息:
柳胜超,王夏黎,张 琪,赵嘉兴
(长安大学 信息工程学院,陕西 西安710064)
此内容为AET网站原创,未经授权禁止转载。