kaiyun官方注册
您所在的位置: 首页> 通信与网络> 设计应用> 基于重点突发词的突发事件检测方法
基于重点突发词的突发事件检测方法
2020年电子技术应用第11期
富雅玲1,杨文忠1,2,吾守尔·斯拉木1,杨蒙蒙1,梁 凡1
1.新疆大学 信息科学与工程学院,新疆 乌鲁木齐830046; 2.中国电子科学研究院 社会安全风险感知与防控大数据应用国家工程实验室,新疆 乌鲁木齐830000
摘要:由于突发事件具有突发性、聚众性、破坏性,针对微博中发布的突发事件,避免由突发事带来一系列社会问题,提出一种结合用户影响力和突发词的突发事件检测方法。为提取大量重点突发词,使用词影响力和词状态两个指标计算词突发值,将大于一定阈值的词作为突发词;采用凝聚层次聚类方法,对突发词集的共现矩阵进行聚类得到热点话题。之后将结果放入训练好的分类器对热点话题进行分类,最终得到突发事件及其类型。使用真实的微博数据对其进行实验,对比使用分类器前后的实验结果,该方法可以有效过滤一般热点话题,提高突发事件检测的准确率。
中图分类号:TP391.1
文献标识码:A
DOI:10.16157/j.issn.0258-7998.200148
中文引用格式:富雅玲,杨文忠,吾守尔·斯拉木,等. 基于重点突发词的突发事件检测方法[J].电子技术应用,2020,46(11):82-86.
英文引用格式:Fu Yaling,Yang Wenzhong,Woxur Silamu,et al. Method of bursty events detection based on key bursty-words[J]. Application of Electronic Technique,2020,46(11):82-86.
Method of bursty events detection based on key bursty-words
Fu Yaling1,Yang Wenzhong1,2,Woxur Silamu1,Yang Mengmeng1,Liang Fan1
1.College of Information Science and Engineering,Xinjiang University,Urumqi 830046,China; 2.National Engineering Laboratory of Social Security Risk Perception and Prevention and Control of Big Data Application, Chinese Academy of Electronic Sciences,Urumqi 830000,China
Abstract:Because of the suddenness, crowd-gathering and destructiveness of bursty events, this paper proposes an bursty event detection method combining user influence and bursty-words for the bursty events published in weibo to avoid a series of social problems caused by bursty events. In order to extract a large number of key burst-words, we need to first calculate the bursty value of words, using two indicators: word influence and word state, taking words larger than a certain threshold as burst words; adopting cohesive hierarchical clustering method, hot topics are clustered by the co-occurrence matrix of burst word sets. After that, the results were put into the trained classifier to classify hot topics, and finally the bursty events and their types were obtained. The real microblog data were used to conduct bursty events on them. The experimental results before and after the use of the classifier were compared. This method can effectively filter common hot topics and improve the accuracy of emergency detection.
Key words :bursty event;burst word;clustering;classification;event detection

0 引言

微博因其良好的服务和海量的用户而被大众所熟知,现已成为国内最大的社交媒体。突发事件具有突发性和破坏性,在发生突发性事件,网民在社交媒体上进行传播,没有相应的法律条款来对事件采取相应措施,对应急管理会形成一些障碍,如果不能及时遏制事件发展的趋势,将会给社会带来一些负面影响。社交网络中的突发事件是指在社交网络中先前若干时间段内该事件很少被用户讨论或者被讨论频次呈现平稳分布,但在当前时间段内以高频次出现的事件[1]事件检测有助于及时了解人们对事件的看法和实际情况,减少突发事件信息搜索的任务,这一工作为自然语言处理(NLP)和机器学习的研究提供了方向[2]。因此,快速有效地检测到突发事件,及时消除突发事件可能带来的社会负面效应,变得尤为重要。综合以上分析,提出一种结合用户影响力和突发词的突发事件检测方法,对突发事件及其类型进行检测。




本文详细内容请下载:http://www.chinaaet.com/resource/share/2000003060




作者信息:

富雅玲1,杨文忠1,2,吾守尔·斯拉木1,杨蒙蒙1,梁 凡1

(1.新疆大学 信息科学与工程学院,新疆 乌鲁木齐830046;

2.中国电子科学研究院 社会安全风险感知与防控大数据应用国家工程实验室,新疆 乌鲁木齐830000)

此内容为AET网站原创,未经授权禁止转载。
Baidu
map