文献标识码:A
DOI:10.16157/j.issn.0258-7998.190702
中文引用格式:孙帆,黄海波,卢军,等. 一种新型的12位SAR ADC设计[J].电子技术应用,2019,45(11):36-41.
英文引用格式:Sun Fan,Huang Haibo,Lu Jun,et al. Design of a novel 12-bit SAR ADC[J]. Application of Electronic Technique,2019,45(11):36-41.
0 引言
随着集成电路、移动通信、传感器网络等技术的快速发展,各种微型化、智能化的传感器作为连接物理世界和各种智能设备的桥梁,受到了研究者越来越高的重视[1-2]。模拟数字转换器(ADC)起着连接模拟前端处理电路和数字信号处理电路的功能,对实现各种自然界的信号高质量、无失真的采集和处理起着至关重要的作用[3]。此外,由于现在的智能传感器对长时间续航、便携式、可植入式等功能提出要求,低功耗、高精度的ADC成为研究的热点。逐次逼近模数转换器(SAR ADC)以其结构简单、功耗低、精度较高、面积较小等优点,在生物电信号采集、压力采集、温湿度监控等传感器设备中得到广泛的应用[4]。
本文设计了一种能较好地折衷功耗、精度、速度这三个相互矛盾的性能指标的SAR ADC。基于一种新型的电容开关切换算法,同时采用分段式电容阵列、分时工作的比较器等措施尽可能地降低功耗、提高精度,取得了较优异的性能。
1 电容阵列的开关切换算法
SAR ADC的基本结构由数模转换器(DAC)、比较器、SAR逻辑控制电路、采样保持电路构成,其原理是基于二进制搜索算法进行模数转换。DAC有多种类型,应用最广泛的是电容式DAC。
电容式SAR ADC在进行模数转换时,电容阵列的开关切换策略决定了电路的复杂度、电容阵列的面积、比较器的比较精度、数据转换所需的动态功耗等。本文通过比较传统的电容开关切换算法[5]和本文采用的一种新型的电容开关切换算法,说明本文采用算法的详细控制策略以及优点。
1.1 传统的DAC电容开关切换算法
传统的N位电容式DAC结构图如图1所示,DAC由单位电容个数按二进制递增的电容阵列构成。采用下极板采样,下极板通过开关连接至三个电平以进行切换,分别是输入信号、高电平参考电压Vref、低电平地电压GND。
传统的DAC电容开关切换算法采用先置位后判断的方式。首先进行信号采样,将差分DAC电容阵列的上极板均连接至共模电压Vcm,正负端电容阵列的下极板分别接正负端输入信号Vinp和Vinn。采样完成后,断开电容阵列的上极板开关,将正端DAC的所有电容下极板切换至地电压GND,负端DAC的电容下极板切换至正参考电压Vref,然后开始从高位到低位进行模数转换过程。以最高位(MSB)为例,先预置位为1,将MSB的正端电容下极板电平由GND切换至Vref,负端电容下极板电平由Vref切换至GND。比较DAC正端输出电压VDACP和负端电压VDACN的大小,如果VDACP>VDACN,表明预置位1正确,该位输出为1,MSB的电容连接方式不变;否则VDACP<VDACN,表明该位预置1错误,MSB的电容电平向相反方向切换,该位输出为0。以此类推,直到比较得出N位的转换结果。传统的DAC电容开关切换算法的缺点是电容面积大、动态功耗较高、逻辑控制较复杂。
1.2 一种新型的DAC电容开关切换算法
本文采用一种新型的电容开关切换算法,该算法是在基于共模电平(Vcm-based)电容开关切换算法[6]的基础上发展而来,其DAC结构如图2所示。将Vcm-based电容式DAC中每位对应的电容分为大小相等的两个,如最高位的电容值2N-1C0被分成两个2N-2C0并联,最低位C0被分为两个C0/2并联。该算法采用上极板采样,在初始状态时,正端电容Cpai(i=0~N-1)的下极板连接至GND,正端电容Cpbi(i=0~N-1)的下极板连接至Vref;负端电容Cnai(i=0~N-1)的下极板连接至Vref,负端电容Cnbi(i=0~N-1)的下极板连接至GND。这样,正负端电容阵列的一半连接至GND,一半连接至Vref,等效为所有的电容下极板都连接至共模电平Vcm(取Vcm=Vref/2)。因此,该算法的电容开关切换电平只有GND和Vref,省去了Vcm产生电路及缓冲器电路。极大地简化了电路,降低了功耗,且仍能保持DAC输出差分信号共模电平的恒定。
此新型的电容开关切换算法的工作流程为:首先进行采样,正负端电容阵列的上极板分别接正负端输入信号Vinp和Vinn,电容的下极板按初始状态连接。直接比较DAC正负端的采样电压,就可以得到MSB的结果。如果MSB=1,则次高位的Cpa电容下极板电平保持为GND,Cpb电容下极板电平由Vref切换至GND;次高位的Cna电容下极板电平保持为Vref,Cnb电容的下极板电平由GND切换至Vref。如果MSB=0,则电容电平切换方向和MSB=1时相反。在开关电平切换完成后,通过比较器即可得到次高位的结果。以此类推,由高到低逐次得出N位的转换结果。
对于12位的SAR ADC,以N=12为例给出了不同电容开关切换算法下,差分二进制加权电容阵列DAC所需的单位电容个数、参考电压类型、平均功耗等情况如表1所示。可见,本文采用的开关切换算法所需的电容面积、平均功耗比传统算法大幅减少。且参考电压没有Vcm,节省了Vcm产生电路和缓冲电路的功耗。
2 SAR ADC的电路设计
2.1 SAR ADC的整体结构
本文设计的SAR ADC的整体结构如图3所示。电路主要包含四个部分,即12位的全差分开关电容式DAC、采样电路、分时工作的比较器、逐次逼近(SAR)逻辑控制和寄存器电路。
开关电容DAC有两个主要功能:一是和采样开关配合起来,进行输入信号的采样;二是在逐次逼近(SAR)逻辑控制下由高位到低位进行电容阵列的开关切换,实现二进制搜索算法。采样开关采用自举(bootstrap)开关的结构,尽可能地降低采样的非线性误差[4]。分时工作比较器起着比较差分DAC正负端输出电压的作用,将比较的高低电平结果输入SAR逻辑控制电路。在本设计中,全差分动态比较器COMP1和静态预放大比较器COMP2进行分时工作,COMP1比较前8 bit的DAC输出电压,COMP2比较后4 bit的DAC输出电压。两路比较器分别被时钟信号CLK_COMP1和CLK_COMP2控制,两路比较器的输出进行或运算得到整体的比较结果。SAR逻辑控制电路产生逐次逼近的逻辑时序,对每一位的比较输出结果进行运算,产生开关切换的控制信号以控制DAC开关电容阵列中开关的切换方向。
2.2 DAC电容阵列设计
本设计的DAC电容阵列如图3中电路所示,采用全差分的上极板采样的分段式电容阵列结构。最高位直接进行比较,没有电容开关的切换。故采用7+4的分段结构,高位电容阵列为7位,低位为4位。末尾为冗余位,不进行开关切换,起着增加转换精度的作用。电容阵列中所有的电容都是由单位电容C0构成,桥接电容的值为C0。电路中最小的电容为两个单位电容串联即C0/2,这种方法的优点是在不大幅增加电容面积的前提下保证转换精度。
电容阵列中每一位的电容被分为两个相等的部分并联,在初始状态一个下极板接Vref,一个接GND。如MSB正端电容阵列Cp11被分为Cpa11和Cpb11,电容值均为32C0;初始时Cpa11下极板接GND,Cpb11下极板接Vref。MSB负端的电容阵列Cn11被分为Cna11和Cnb11,同样为32C0;初始时Cna11下极板接Vref,Cnb11下极板接GND。这种方法可以确保在开关电容总面积不变,且电容切换的电平没有额外增加一个Vcm时,仍能使DAC输出的差分电压信号的共模电平保持为定值,从而使比较器的输入信号共模电平恒定,比较精度不会降低。
在SAR ADC转换过程中,首先进行信号采样,自举采样开关Sin闭合。正负端电容阵列的上极板分别连接至正负输入信号Vinp和Vinn,正负端DAC电容阵列的采样电荷分别为:
在设计的12位SAR ADC转换时,在进行第i步开关切换时,差分DAC输出的正负端电压分别为:
其中,Mi为比较器从高位到低位第i次比较后正端输出的结果。例如,M1即Vinp和Vinn直接经过比较器比较后正端的结果,也是MSB的转换数据。
可以看出,差分DAC输出电压信号的共模电平为固定值,其值恒为:
差分DAC输出电压共模电平的恒定,确保了比较器工作时静态工作点的稳定,提高了比较器的精度。
2.3 分时工作比较器设计
比较器在SAR ADC中起着比较差分DAC的输出电压,进而得到该位的转换结果,并决定下一位电容阵列开关切换方向的重要作用。比较器的比较精度、比较速率和功耗对SAR ADC的综合性能有着决定性的影响[7]。
在本设计中,为了兼顾高比较精度和低功耗的要求,设计了一种分时工作的比较器。其中,在前8 bit的比较中,采用双尾电流全动态比较器,其特点是只消耗动态功耗,功耗较低,比较速度较快,但精度较差。在后4 bit的比较中,采用静态预放大器和锁存比较器级联的结构,其特点是可以对DAC输出的电压差进行一定的静态预放大,提高比较精度,但功耗较高、速度较慢。两路比较器的输出进行或逻辑运算,最终输出整体的比较结果。
2.3.1 全动态比较器设计
设计的全动态比较器采用双尾电流式的结构,如图4所示。尾电流源均由时钟信号控制,任意时刻电路没有静态电流,功耗非常小,比较速度非常高。比较器为两级电路,第一级为全差分动态预放大器,第二级为带尾电流源的动态锁存比较器。其工作原理是,利用输入电压的差异,造成第一级比较器输出节点VOP1、VON1的充放电快慢的差异,形成VOP1和VON1电压变化的差异。将第一级的输出传递给锁存比较器的输入端,通过首尾相连的反相器结构将输入的差值迅速放大,快速将第二级比较器的输出VOP、VON的一端拉高,另一端拉低。
2.3.2 静态预放大比较器设计
在后4 bit的比较中,采用静态预放大比较器,其原理图如图5所示。第一级为静态预放大器,M1、M2为PMOS管差分输入,主要是为了降低噪声、增大采样电压的输入范围。M4、M5栅极交叉耦合连接,引入弱正反馈,可以增大预放大器的增益和带宽,提高比较器的精度和速度。AMP_EN是控制电路是否工作的使能信号。
第二级电路为动态锁存比较器,有两个工作模式,其特点是响应速度快,动态功耗较低。CLK为控制锁存比较器工作的时钟信号,CLKN为其反相时钟。当CLK端有时钟输入且为低电平时,动态锁存比较器工作在复位模式,正负端输出均为低电平。当CLK时钟为高电平时,动态锁存比较器工作在比较模式,M17、M18、M21和M22构成了首尾连接的反相放大器结构,形成了正反馈,可以迅速将比较器正负输出端的电压拉开,实现对微小差异的输入电压的比较。
2.4 SAR逻辑控制时序
逐次逼近(SAR)逻辑控制电路由D触发器和逻辑门实现,其逻辑时序如图6所示。
在SAR逻辑控制时序图中,CLK和CLKS为外部输入的信号。其中CLK为时钟信号,CLKS为采样控制信号,CLKS信号的频率即为SAR ADC的采样频率。Sampling为输入信号的采样信号,控制自举开关对输入信号进行采样。采样完成后,CLKi(i=11~0) 每隔一个时钟周期逐次由低电平向高电平变化,控制电容开关由高位到低位逐次进行电平切换,完成逐次逼近功能。CLK_COMP1为全差分动态比较器的时钟信号,控制全差分动态比较器工作,比较输出前8 bit数据;当其恒为低电平时,全差分动态比较器停止工作,正负输出端全为低电平。CLK_COMP2为静态预放大比较器的动态锁存器的时钟信号,当有时钟输入时,比较器正常工作;当其恒为低电平时,锁存比较器输出低电平,停止工作。ADC_OUT为比较器依次比较后输出的各位转换结果,AMP_EN为静态预放大器的使能信号。当AMP_EN为低电平时,静态预放大器工作,配合锁存比较器完成后4 bit的比较,其余时间停止工作,极大地节省了功耗。
3 SAR ADC仿真验证
本设计的SAR ADC采用TSMC 0.18 μm CMOS工艺实现,利用HSPICE软件对电路的各项性能进行仿真。仿真时的电源电压和Vref电平为1.8 V,SAR ADC的采样率为200 kS/s。
输入频率为10 kHz、振幅为1.8 V的正弦波差分信号时,采样1 024个点,对转换的数据进行快速傅里叶变换(FFT)频谱分析,可得频谱曲线如图7所示。结果显示,无杂散动态范围(SFDR)为76.91 dB,总谐波失真(THD)为-73.56 dB,信号噪声失真比(SNDR)为70.94 dB,有效位数(ENOB)为11.49 bit。
在采样率为200 kS/s,输入信号频率变化时,SFDR和SNDR随输入频率变化的动态曲线如图8所示。可以看出,当输入频率在1 kHz~95 kHz范围内变化时,SFDR的范围是69.85~80.88 dB,SNDR的范围是67.25~71.29 dB。
本设计的SAR ADC的性能参数如表2所示,并和已发表的SAR ADC性能进行比较。可见,由于本文采用的多种降低功耗和提高精度的设计,SAR ADC的FoM值较低,具有一定的性能优势。
4 结论
本文设计了一种新型的12位SAR ADC,采用新型的电容开关切换算法,不需要额外的共模参考电压,仍能确保开关电容DAC的差分输出信号的共模电平稳定,保证了转换的精度。DAC电容阵列采用7+4的分段式电容阵列结构,极大地减小了面积、节省了功耗。比较器采用全差分动态比较器和静态预放大比较器分时工作的技术,综合考虑了比较精度和功耗的要求。仿真结果表明,SAR ADC在200 kS/s采样率下,ENOB为11.49位,FoM为38.2 fJ/(conv·step),取得了良好的性能。
参考文献
[1] 陈兴,林建廷,毛越,等.一种应用于电网中电力监测高精度ADC设计[J].电子技术应用,2018,44(12):25-27,31.
[2] TANG H,SUN Z C,CHEW K W R,et al.A 1.33 μW 8.02- ENOB 100kS/s successive approximation ADC with supply reduction technique for implantable retinal prosthesis[J].IEEE Transactions on Biomedical Circuits and Systems,2014,8(6):844-856.
[3] 侯佳力,胡毅,何洋,等.用于SAR ADC的片上多模式基准电压产生电路的设计[J].电子技术应用,2018,44(7):35-37,41.
[4] 王冰,姜汉钧,郭衍束,等.用于植入式心电监测的12位低功耗SAR ADC[J].微电子学,2018,48(6):728-732.
[5] GINSBURG B P,CHANDRAKASAN A P.An energy efficient charge recycling approach for a SAR converter with capacitive DAC[C].ISCAS,2005:184-187.
[6] 刘滢浩,刘宏,徐乐,等.一种Vcm-Based 10位16M采样率低功耗逐次逼近型模数转换器[J].微电子学与计算机,2017,34(11):99-103.
[7] Wang Ya,Xue Chunying,Li Fule,et al.A low power 11-bit 100 MS/s SAR ADC IP[J].Journal of Semiconductors,2015,36(2):1-5.
[8] Yang Siyu,Zhang Hui,Fu Wenhui,et al.A low power 12 bit 200 kS/s SAR ADC with a differential time domain comparator[J].Journal of Semiconductors,2011,32(3):1-6.
[9] VERMA N,CHANDRAKASAN A P.An ultra low energy 12-bit rate-resolution scalable SAR ADC for wireless sensor nodes[J].IEEE Journal of Solid-State Circuits,2007,42(6):1196-1205.
作者信息:
孙 帆,黄海波,卢 军,陈宇峰
(湖北汽车工业学院 电气与信息工程学院,湖北 十堰442002)