kaiyun官方注册
您所在的位置: 首页> 通信与网络> 业界动态> 人工智能和边缘计算有了新的用武之地

人工智能和边缘计算有了新的用武之地

2019-03-04
关键词: 物联网 IT OT 5G技术

近年来,政府部门陆续出台相关政策支持我国工业物联网产业的推广及生态建设,工业物联网产业迅猛发展。与此同时,带宽的增长速度已经无法匹配工业物联网领域所产生的大量的数据,因此,边缘智能技术被越来越多的采用。


据IDC预测,到2020年全球将有超过50%的物联网数据将在边缘处理。而边缘设备只能处理局部数据,无法形成全局认知,因此实际应用中仍然需要借助云计算平台来实现信息的融合,可以说,云计算与边缘计算正逐渐成为支撑物联网的两大支柱。


工业物联网的高要求


与传统意义上的物联网不同,工业物联网面临着一些新的挑战,尤其是和消费类物联网相比有很大大同:第一,它对实时性要求非常高,一般在消费领域不谈自动化(OT),在消费领域谈的都是信息化(IT),只有在工业领域才涉及到OT的问题,这直接涉及到对于产量信息的控制管理,而对机器控制管理,往往都是毫秒级甚至在微秒级,所以它对实时性的要求更高。第二,英特尔中国区物联网事业部首席技术官兼首席工程师张宇博士表示:“我们看到在跟产线上的工厂的一些用户进行交流的时候,他们对于可靠性方面的要求也更高,对产品监控质量往往都是很高要的。在其他的物联网领域,如果有一些小的差错,客户也许是能够容忍的,但是在工业领域要求是不一样的,这就带来了技术方面的要求,包括芯片的算力、可靠性,以及软件相应的功能、可靠性都提出了更高要求。”

微信图片_20190304201829.jpg

图:英特尔中国区物联网事业部首席技术官兼首席工程师张宇博士


现在,5G很热,而且与4G相比,5G网络具有高带宽和低时延的优势,另外,5G能够做通信的信道隔离,使得不同应用之间有很好的隔离度。但如果把5G用到工业物联网,其能力还是不够的,因为5G在网上承载了TCPIP协议,它的服务质量不能完全保证,它是把一个包从A点放到B点的方式,在中间可能经过若干个节点的转发,但是每一个节点转发过程中都会带来延时,这个延时怎么控制是目前协议没有完全解决的。


如果把5G技术用在工业领域,工业领域对于延时的要求那么的苛刻,必须有新技术辅助,如TSN(时间敏感网络),它可以解决上述问题。英特尔看到了5G等其他通信技术,包括工业Wi-Fi技术等。该公司深度参加了同国际标准组织的合作,来推动最新的通信技术在工业领域的落地。


技术布局


从技术角度来看,英特尔对物联网有着全面布局。据张宇博士介绍,除了互联到智能,从智能到自主的趋势以外,从近期来看,该公司把工作重点放在以下几个方面:第一,视频技术的全面支撑,在安防、工业的机器视觉领域,现在看到越来越多的零售终端带有人工智能的处理能力,包括教育领域有很多教室里的电子白板,也通过一些视频的分析去了解学生对老师教授内容的反馈;另外随着芯片计算能力的不断提升,用户有越来越强的需求,怎么样能够充分利用这样的算力,把原来需要在几台机器上实现的工作整合在一台机器上,从而降低整体拥有成本。


张宇表示:“基于这样的趋势,我们做了产品、解决方案、工具等开发规划。比如在视频处理方面,尤其是硬件,现在通用处理器里,随着集成性能越来越强大的显卡,利用这样的硬件资源进行加速,加速对于人工智能的处理。还专门做了有针对性的人工智能加速器,这些加速器的设计也是不断迭代和发展的。除了一些传统的对于卷积的加速,我们也一直跟踪最新的人工智能前沿技术,比如现在业界比较热的‘网络压缩’技术,怎么把现有的人工智能算法里不需要的部分抽掉,从而提高整体的计算能力,整体系统性能。类似于这样最前沿的技术点,我们一直在跟踪,也会不断地融入到我们的产品当中去。”


“另外,我们的软件会配合我们的硬件,硬件的所有能力最终都是要通过软件发挥出来。开发者除了需要能够很好地调用硬件之外,还需要更好的案子,告诉我怎么实现我需要使用的案例。我们的工具里既包含对这些类似于驱动、开发界面,帮助开发者能够更好地把这些开发的工作完成,我们也会给出一些参考,告诉他在不同的垂直领域使用场景里怎么快速构建应用。”


“我们也在推动虚拟化技术以及相应软件工具的开发,帮助合作伙伴更快地构建基于负载整合的新解决方案。这两个方面是我们现在工作的重点”,张宇博士说。


全栈解决方案


针对边云协同的产业趋势,英特尔推出了适用于边缘计算,涵盖芯片、板卡以及软件工具的人工智能产品的全栈解决方案。可以应用在从智能摄像机,智能网络视频存储器到智能视频服务器的各种设备中。


2018年,该公司发布了新一代视觉加速芯片Movidius Myriad X。这一面积仅有8.8x8mm,功耗仅为2W的芯片,能够提供1T的计算能力,进而实现对卷积神经网络中卷积层,全连接层和激活函数的加速。在实际应用中,Myriad X能够很好的满足功耗层面的要求,同时其算力也足以满足处理一路高清视频的需求。


相较于低功耗芯片,网络硬盘录像机(NVR)和视频服务器对算力有着更高的要求,同时能够接受的功耗也更高。针对这类需求,英特尔发布了视觉加速器产品系列——Movidius Myriad X视觉技术处理器和高性能Arria 10 FPGA。以Movidius的方案为例,其能够在一块板卡上集成8~16颗Movidius Myriad X芯片,提供8~16T的算力,用户可以根据各自边缘设备的性能指标,选取不同的配置。


为了帮助开发者进行机器视觉和深度学习应用的开发,英特尔还发布了OpenVINO工具包。OpenVINO工具包支持加速高性能计算机视觉应用和深度学习推理,帮助开发人员和数据科学家加速计算机视觉工作负载,并简化深度学习部署,在各种英特尔平台中轻松实现边缘到云的异构执行。


加强产学研合作


据悉,英特尔在工业物联网领域在加强产学研合作,具体包括以下几个方面:第一,在国内和大学有非常好的合作,去年该公司还举办了最近的一届大学生电子设计竞赛,围绕着物联网、人工智能主题开展。去年,张宇博士作为评委参加了上海交大的活动,活动里用到了很多技术,如人工智能加速棒、计算棒等硬件,来帮助大学生更快地把好的方案落地,英特尔这方面也提供了一定的支持。


据张宇博士介绍,2018年,有一个大学生的案例令其印象深刻,他做了一个通过静脉血管的检测来做门锁控制,以前门锁控制通过虹膜或者指纹,但现在有越来越多的手段能够破解,但如果利用人工智能的方式,利用血管的造影做一些门锁的开锁操作,相对来说是新技术,这些技术在大学生当中已经有探索和尝试,英特尔则通过硬件加速它的处理和操作。


英特尔和国外大学也有比较多的合作,例如和美国卡耐基梅隆大学有一个专门的联合实验室,主要针对视频云等最新的前沿技术。通过这样的合作,一方面帮助在学术领域一些前沿的技术能够更快推进,另一方面也把该公司在产业所看到的用户需求带到合作当中,指导他们的研究方向,把他们的研究成果通过英特尔的渠道更快落地。


本站内容除特别声明的原创文章之外,转载内容只为传递更多信息,并不代表本网站赞同其观点。转载的所有的文章、图片、音/视频文件等资料的版权归版权所有权人所有。本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如涉及作品内容、版权和其它问题,请及时通过电子邮件或电话通知我们,以便迅速采取适当措施,避免给双方造成不必要的经济损失。联系电话:010-82306116;邮箱:aet@chinaaet.com。
Baidu
map