kaiyun官方注册
您所在的位置: 首页> 嵌入式技术> 设计应用> 基于北斗通信的工业过程数据压缩方法
基于北斗通信的工业过程数据压缩方法
2017年电子技术应用第10期
陈 勇,黄茹楠,刘 青,李建坡,李 鑫
燕山大学 电气工程学院,河北 秦皇岛066004
摘要:短报文通信是我国北斗卫星导航系统特有的一个功能,可用于公网通信覆盖盲区位置的数据传输。而通信频度和报文长度的限制,降低了北斗短报文通信的效率,为此,提出了一种用于北斗通信数据的压缩方法。该压缩方法分两步,第一步为有损压缩,以工业数据库压缩技术中的旋转门算法为基础,同时为了实现有损压缩的精度可调,用改进的BP神经网络PID控制器对旋转门算法的参数进行在线调整;第二步为无损压缩,提出了前置特殊字节配合差值传递的无损压缩策略。实验表明经过此方法两步压缩后,对工业过程数据完成了较高的压缩,同时,压缩精度也可在压缩过程中准确调整。
中图分类号:TN911.23;TP13
文献标识码:A
DOI:10.16157/j.issn.0258-7998.170127
中文引用格式:陈勇,黄茹楠,刘青,等. 基于北斗通信的工业过程数据压缩方法[J].电子技术应用,2017,43(10):106-110,115.
英文引用格式:Chen Yong,Huang Ru′nan,Liu Qing,et al. Industrial data compression method based on Beidou′s short-message communication[J].Application of Electronic Technique,2017,43(10):106-110,115.
Industrial data compression method based on Beidou′s short-message communication
Chen Yong,Huang Ru′nan,Liu Qing,Li Jianpo,Li Xin
College of Electrical Engineering,Yanshan University,Qinhuangdao 066004,China
Abstract:Beidou′s short-message communication, which is a special feature of Beidou satellite navigation and positioning system, is especially used in the area which is beyond the coverage of general public communication. However, because of the limit in frequency of communication and the length of packet, the efficiency of Beidou′s short-message is not very high. To solve this, a compression method based on Beidou short-message is presented. This compression method includes two steps. The first step is called lossy compression. In this step, Spinning Door Transformation(SDT), which is a common compression algorithm in database field, is as a core algorithm for the stage of lossy compression. In addition, a revised BP Neural network PID controller is designed to adjust some parameters used in SDT. The second step is called lossless compression. A method called front extra byte lossless compression is presented in this paper. After a series of experiments, it can be concluded that the original industrial data has finished compressed successfully. In addition, variable precision of compression could be available during the compression.
Key words :Beidou′s short-message;Spinning Door Transformation(SDT);industrial data

0 引言

北斗卫星导航系统是我国自主建设、独立运行、集导航定位、授时、用户监测、短报文通信于一体的导航系统[1]。短报文通信是北斗系统特有的一个功能,其不受地形条件和环境气候等影响,可用于解决偏远地区数据实时通信问题,特别适用于常规通信手段存在盲区多、基建投入大的场合使用,例如野外的石油、天然气的阀站和门站,以及远离移动网络覆盖地区或者通信不稳定地区工厂的数据传输。

北斗卫星的主要任务是定位导航,通信的信道资源少,民用北斗短报文通信存在单次报文长度和通信频度受限的问题。对于工业远程监测控制和数据采集(Supervisory Control and Data Acquisition,SCADA)项目中的数据而言,数据采集频率高,数据量大。若对数据作分包处理,可实现大量数据传输。但谷军霞[2]等在2015年进行的北斗短报文丢包测试中表明,随着报文分包数的增加,报文的传输成功率逐步降低。若减少对原始工业数据的采样频率,则可降低数据量。但对于企业来说,历史数据是工业现场宝贵的财富,是为后续工程技术人员提供分析和故障处理的基础资料,是不能因为传输的限制就随意减少和丢弃的。因此就需要有一种方法,既可完成实时数据的传输,又不会产生太大的数据量。

目前已发表的关于北斗短报文通信的论文中,于龙海提出先建立运动目标的数学模型,通过参数简化和差分编码实现北斗定位数据的压缩[3]。陈海生提出的固定长度的索引码表用于渔获数据的传输,可以解决数据无损压缩传输,但是不具有通用性[4]。彭浩提出了中文智能分词和无损压缩编码的联合压缩算法,进而实现通信数据扩容[5],但是工业过程数据中,主要传输的是实数信息。目前,对于北斗短报文通信的工业过程数据的传输,还没有较实用的数据压缩和传输的解决办法。因此本文提出了一种分别从有损和无损压缩两个方面,对数据分步进行压缩处理的解决方案。实验证明,该方法可有效对短报文数据进行压缩处理,从而提高工业过程数据传输的效率和可靠性。

1 北斗通信压缩第一步:有损压缩

有损压缩是在压缩工程中损失一定的信息以获得较高的压缩比[6]。为后文评价有损压缩过程,本文采用曲奕霖[7]在其论文中提出的评价标准,如下:

tx5-gs1-2.gif

CR用于衡量算法对一组数据的压缩能力,而δ用于衡量一组数据的平均失真度。

旋转门算法是一种常见的过程数据压缩算法。本文提出的北斗通信压缩算法中的有损压缩阶段就基于旋转门算法。下面先介绍旋转门算法,再介绍本文提出的基于改进BP神经网络PID的自控精度SDT有损压缩算法(后文简称为自控精度有损压缩算法)。

1.1 标准旋转门算法(SDT)分析

旋转门压缩算法由美国OSI软件公司研发,此算法主要针对的是浮点型的数据。SDT作为线性拟合的一种简便算法,具有效率高、压缩比高、实现简单、误差可控制的优点。基本算法原理如图1所示。

tx5-t1.gif

设ΔE为SDT算法的压缩精度参数,图1中A点为起始点,以距离A点为ΔE的上下两点为支点(类似两扇门的门轴,故得名旋转门)。压缩开始时,两扇门是关闭的,且在算法执行过程中,门只能往外开启,不能往内关闭。随着数据点的增加,门就会旋转打开,两扇门的内角和等于180°,就停止操作,存储前一个数据点,并由该点开始新一段压缩。经过旋转门压缩后,由A到B点的直线代替A到B的数据点。

解压过程:根据每段直线保存的起始点和终止点可以求出线段的公式,然后根据某点横轴坐标求出其对应的纵坐标数据值。

1.2 自控精度有损压缩算法算法设计

对于SDT算法有两方面需要注意:(1)ΔE是决定SDT算法解压平均误差δ的关键。如果ΔE选择较小,δ也小,压缩比CR低;反之ΔE选择较大,CR高,δ却也变大。即使是有经验的工程师,也需要长时间调整ΔE才能找到合适的值,且当数据范围和特征改变时,为满足压缩比和精度的要求,还需重新设置。(2)δ通常是作为评价压缩过程好坏的标准,如果δ不符合要求,较高的CR没有任何意义。

基于以上两点,将关注集中在δ的控制上。通过给定理想的δ,用算法自适应调整ΔE。本文将工程中的反馈控制思想引入,用PID算法对ΔE在线调整,同时用神经网络算法动态调整PID参数,并通过其强大的学习和网络记忆功能,实现相似数据快速压缩。

该算法包括两方面内容:改进BP神经网络PID控制器(后文简称为:NBP-PID)和标准SDT压缩及解压算法。数据通过SDT压缩及解压过程视为被控对象,期望的解压平均误差δs作为给定输入,实际解压平均误差δ作为系统的输出。NBP-PID控制器不断调整ΔE的输出,进而控制δ输出,直到偏差值小于算法停止运行的门限值Th为止,这样便完成了第一组数据的压缩。门限值计算公式为:

tx5-gs3.gif

当首组数据压缩完成后,保留此时控制器各个参数,用做下一组数据压缩时控制器参数的初始值,完成第二组数据的压缩,以此类推。同时将压缩好的首组数据用北斗无损压缩算法继续压缩。图2为首组数据压缩算法的反馈控制系统模型。

tx5-t2.gif

1.2.1 NBP-PID控制器设计

在工业控制中,对PID控制器比例、积分、微分3个系数的调整一般很难。根据神经网络理论,三层BP神经网络可逼近任意线性和非线性函数,通过神经网络的自身学习,加权系数调整可以使其稳定状态对应某种最有规律下的PID控制器参数[8]。于是本文采用三层BP神经网络(4-5-3结构)来调整PID的参数。

输入层神经元为4个,分别是输入rin、输出yout、误差error和常数1;隐含层选择5个即可满足要求,3个输出神经元对参数Kp、Ki、Kd进行在线调整。输入层的输入为:

tx5-gs4-12.gif

1.2.2 自控精度有损压缩算法实现步骤

(1)第一次进行压缩时,对相应的参数初始化。令u、u_1、u_2、u_3、u_4、u_5,即控制器的输出零时刻和各历史时刻初始值都为0,同时误差error、输出值yout零时刻和各历史时刻也都初始化为0。隐含层的加权系数初始值和和输出层加权系数的初始值为-0.5~0.5之间的随机数。选定学习速率η、惯性系数α和β,以及门限值Th;

(2)采样得到rin(k);将前一时刻控制器的输出u(k-1),即ΔE传入代表被控对象模型的压缩解压函数中计算,得到此时的输出yout值,再计算该时刻的系统误差error(k)=rin(k)-yout(k);

(3)计算神经网络各层神经元的输入、输出,输出层的输出即对应PID控制器的3个可调参数Kp、Ki、Kd,据此计算控制器当前时刻的输出u(k);

(4)进行神经网络学习,在线调整输出层和隐含层加权系数值,然后将各状态参数更新;

(5)根据式(3),计算系统此时的Th值,如果小于预先设置的门限值,则表明此组数据已达到给定误差压缩要求,进入步骤(6),否则进入步骤(2),再次循环;

(6)将此时刻以及前3个时刻的输出层及隐含层加权系数值保存,作为下组数据压缩时零时刻及历史时刻的初始值,保存u及前5个时刻的值,作为下组数据压缩各时刻u的初始值。同时,此组压缩后的数据进入后续北斗无损压缩算法中继续压缩;

(7)利用前一组保存的控制器各参数开始下一组数据的压缩,即又一次进入步骤(2),直到所有组别的数据都压缩完毕,算法结束。

2 北斗通信压缩第二步——无损压缩

相对于有损压缩来说,无损压缩占用空间大,压缩比不高,但它 100%地保存了原始信息,没有任何信号丢失,不受信号源影响[9]。 一般的工业过程数据都有明确的物理含义,以项目中某能源公司提供的天然气阀站数据为例,包含了温度、流量、压力、阻力等模拟量信息,也有阀门启停、报警等状态量信息。

本文以过程数据中最常见的流量/压力/阻力为例,对北斗无损压缩算法作介绍。

2.1 数据预处理

假设待压缩实数数据精度为两位小数,数据大小为0.00~999 999.00。且以一个float fRevBuf[500] 类型数组保存,若将此数组每个元素都乘以100,则其小数部分全部转化成了整数,再用强制类型转化得到4 B的无符号整形数组 iPlc[500]。不同类型的整数可表示的数据范围如表1前3行所示,且根据整数在计算机中的保存方式[10],可推得后面的4种情况。

tx5-b1.gif

2.2 北斗短报文通信无损压缩算法

过程数据一般是按时间的先后顺序采集的数据,数据中带有时间特性,大多数工业现场采集数据都是过程数据[11]。因此,数据之间在数值上是有关联的,所以根据相邻数组元素的差值,而不是元素值本身,对其分配存储空间更为合理。下面为具体步骤:

(1)新建数组 int iSub[500],用于保存数组iPlc中相邻元素的差值,即:iSub[i+1]=iPlc[i]-iPlc[i+1]; 并将iPlc数组中的首元素赋值给iSub数组中的首元素。

(2)根据差值数组iSub中的每个元素的值大小,对照表1,给每个元素分配一个从1~4不等的字节长度标记,并用另一个数组iLethByte作出记录。如表2中,差值元素为100,iLethByte数组相同下标元素值为1。

(3)iLethByte数组中每一个元素记录了相同下标位置的差值数组iSub每一个元素所需存储空间的最小字节长度,为了在北斗接收端作解压缩,除了传递iSub数组外也需要传递长度标记数组iLethByte,但这样需要传递的数据量过大。根据表1可知,以不同字节长度可表示的不同的数值范围为依据,可分为7种类型,但现实中不需要每次都分成7种类型,因为过程数据数值大小具有一定的连续性,并不是平均分布的,于是每次压缩时根据过程数据本身的分布规律选择其中的4种(选择的原则后面会补充)类型作为本次传输的标准类型,包含在其余类型里的数据最终会归类到这4种标准类型中,然后用两位二进制数代码来代指此次选出的4个标准类型。例如,此次的4个标准类型字节长度为1、2、2.5、3,则它们的二进制数代码可依次为:00 01 10 11。然后每个元素按照所在的标准类型的字节长度压缩数据,变成一个个存储长度不等的数据,再将每4个变换之后的iSub数组元素组成一组,在每组前面添加一个记录字节bt4Record,bt4Record为8位,每两个二进制位可表示一个iSub元素所在的标准类型的代码,且iSub元素在前面的对应bt4Record的高位,在后面的对应bt4Record的低位,如表2所示。至此,表2中这4个iSub元素前面的bt4Record字节二进制表示为:01100011。

tx5-b2.gif

(4)标准类型的选择组合共tx5-b2-x1.gif为让接收端确定是哪种组合,需要额外传递当前组合的编号。且单次需要压缩的数据个数如不是4的倍数,则使最后一个bt4Record字节不够8位,此时对于不足的字节先补零,然后额外传递本组压缩数据的总数值,便可使北斗接收端解压无误。在每组报文的开头,取两个字节(16个bit位),其中10个bit位记录本次压缩的数据元素总数值(10位可表示:210=1 024个数,足够),剩余6个bit位(26=64>35)表示标准类型组合编号。

至此,一次北斗短报文的数据报文打包完成。

(5)将经过步骤处理后的数据通过北斗设备发送到接收端。接收端解压时,先取出前两个字节,根据6个比特位的分类编号确定此组数据中的四种标准类型;根据10个比特位的数据个数,确定此组原始数据的总个数。然后依次先取bt4Record,再按照此字节的记录长度对每个差值元素取数,分别保存成整数,再依次取下一个bt4Record字节。对于接收到数据字节长度为1、2、4类型的,可根据表1直接强制类型转化变回4个字节的整数;对于其余自定义类型,则需要提取符号位,再根据正数的补码与原码相同,负数的补码为原码取反加一原则处理转化成4个字节的整数。

(6)将步骤(5)保存的整数缩小100倍,再保存成实数类型,至此完成北斗无损压缩的解压缩过程。

补充:一组数据中最大值所在的类型必须是本次选取的标准类型之一。例如iSub[4]元素最大值为8 000 000,则字节为3的标准类型必须取,后再取其他可包含元素值最多的3个类型作为标准类型。

3 试验结果与对比分析

实验数据源于一滚铆实验机床,其作用是用滚铆工具碾压轴承外环边缘的环形槽,使环形槽的一侧边缘向座圈孔或轴承的变形,进而实现轴向固定。数据源自机床中的压力传感器,一组数据表示一次压紧过程,原始压力曲线如图3所示。(原始数据共18组,编号:S1~S18)图中曲线下降阶段是因为电机停转,压力逐步除去引起的,停机时间人为控制,故为排除人为干扰,每组只取前20 s的数据(200个)。

tx5-t3.gif

后续实验中都选定rin(k)为1,学习速率η为1.4,惯性系数α为0.3,β为0.5,门限值Th为0.1。且后续段落中,“第一阶段”指的是北斗通信压缩中的有损压缩阶段,“第二阶段”为无损压缩阶段。

3.1 NBP-PID与标准BP神经网络PID控制器性能对比

图4为在第一阶段中,NBP-PID算法较标准BP神经网络PID算法(简称为BP-PID),6组数据单独压缩时各自达到门限值所需压缩训练次数对比。

tx5-t4.gif

分析图4可知,在修改网络权值时,增加一个k-2时刻的惯性项和“阶梯惯性项”系数的NBP-PID算法,可以减少重复压缩的次数,从而更快达到门限值。

图5为第一组(S1)数据分别采用两种算法解压误差和训练次数的曲线图,采用NBP-PID可在训练11次时达到门限值,即达到给定值的90%以上而结束训练,而BP-PID在最大训练次数(20)内无法达到给定值的90%。综上,NBP-PID的确可以有效加快训练过程,减少重复压缩的次数,从而提升算法的实用性。

tx5-t5.gif

3.2 采用NBP-PID算法压缩多组数据

表3给出当首组数据压缩完成后,后续组别依次继续压缩,达到门限值的压缩次数的测试数据。

tx5-b3.gif

根据表3知,首次压缩数据在10次左右,后续组别重复压缩次数除了个别组别达到最大训练次数,其余数据组别基本可在一两次之内完成压缩。因此通过NBP-PID网络权值记忆功能,当类似数据出现时,可一定程度上加快后续组的压缩,提升整体压缩效率。

3.3 北斗通信压缩算法整体压缩分析

表4描述了两个阶段压缩过程中具体压缩信息。为排除偶然性,这里用的数据与前面实验的数据不同,采用S10~S14的5组数据作为实验数据。

tx5-b4.gif

这5组数据的平均解压误差δ在1.0附近,满足给定值上下波动10%以内的要求。有损压缩阶段的压缩比平均为4.452,实现了用户自定义压缩误差的同时还能拥有不错的压缩比。无损压缩阶段中,压缩后的存储空间是压缩后的数组元素所占空间之和,加上记录字节所占空间之和,再加上处在报文开头的两个字节的总和。

总压缩率是无损压缩之后所占存储空间与原始数据所占存储空间(800=4×200)之比。可以看到,经过两个阶段的压缩之后,数据被压缩到了原始数据的10.5% 左右。由此可见北斗压缩算法的压缩效果良好。

4 结论

本文提出的有损压缩算法已经在实验室环境中完成测试,无损压缩算法在某天然气管线监测项目中实际完成测试部署,效果良好。基于北斗通信的工业数据压缩算法一方面解决了SDT压缩精度不可控、参数设置困难等问题;另一方面,数据经过两个阶段的压缩,获得了较高的压缩比。此外,该算法不仅可用于北斗短报文通信,也可用于其他通信频度和报文长度受限的场合下,因此该算法具有工程实用价值。

参考文献

[1] 杨元喜.北斗卫星导航系统的进展、贡献与挑战[J].测绘学报,2010,39(1):1-6.

[2] 谷军霞,王春芳,宋之光.北斗短报文通信信道性能测试与统计分析[J].气象科技,2015,43(3):458-463.

[3] 于龙洋,王鑫,李署坚,等.基于北斗短报文的定位数据压缩和可靠传输[J].电子技术应用,2012,38(11):108-111.

[4] 陈海生,郭晓云,王峰,等.基于北斗短报文的渔获信息压缩传输方法[J].农业工程学报,2015,31(22):155-160.

[5] 彭皓.北斗系统用户通信数据扩容技术研究[D].西安:西安电子科技大学,2013.

[6] 徐慧.实时数据库中数据压缩算法的研究[D].杭州:浙江大学,2006.

[7] 曲奕霖,王文海.用于过程数据压缩的自控精度SDT算法[J].计算机工程,2010,36(22):40-42.

[8] 谭永红.基于BP神经网络的自适应控制[J].控制理论与应用,1994,11(1):84-87.

[9] 郑翠芳.几种常用无损数据压缩算法研究[J].计算机技术与发展,2011,21(9):73-76.

[10] 张德伟,沈培锋,张德珍,等.计算机补码概念剖析[J].微计算机信息,2005,21(20):177-178.

[11] 沈春锋,黄松鑫,张冬,等.基于参数估计的通用工业数据在线压缩方法[J].控制工程,2011(s1):142-145.



作者信息:

陈 勇,黄茹楠,刘 青,李建坡,李 鑫

(燕山大学 电气工程学院,河北 秦皇岛066004)

此内容为AET网站原创,未经授权禁止转载。
Baidu
map