kaiyun官方注册
您所在的位置: 首页> 模拟设计> 设计应用> 基于BOOST型DC/DC转换器的斜坡补偿电路
基于BOOST型DC/DC转换器的斜坡补偿电路
来源:微型机与应用2014年第1期
田 磊1,2
1.西安邮电大学 电子工程学院,陕西 西安710121; 2.西安电子科技大学 教育部超高速电路设计与电磁兼容重点实验室,陕西 西安710071
摘要:针对现有斜坡补偿电路复杂、补偿效果不明显的现状,设计了一种用于BOOST型DC-DC变换器的斜坡补偿电路。该电路结构简单,补偿效果好,解决了峰值电流控制模式系统产生的不稳定问题,提高了开关电源的稳定性。基于VIS标准0.4 μm BCD工艺实现,利用Candence软件对核心电路进行仿真。结果表明,该系统可以满足系统稳定性的要求,能稳定输出高精度电压,具有很好的应用价值。
中图分类号:TN432
文献标识码:A
文章编号: 0258-7998(2014)01-0041-03
Design of a slope compensation circuit for BOOST DC-DC converter
Tian Lei1,2
1.School of Electronic Engineering,Xi′an University of Posts and Telecommunications, Xi′an 710121,China;2.Key Lab. of High-Speed Circuit Design and EMC,Ministry of Education,Xidian University,Xi′an 710071,China
Abstract:A slope compensation circuit was designed for BOOST DC-DC converter. This circuit, which features a simple structure and high compensation effect, eliminated instability resulted from the peak current mode switching power supply system, and improved the stability of the switching power supply. The design was implemented in VIS standard 0.4 ?滋m BCD process. Results from HSPICE simulation showed that the system could satisfy the requirements of the stability of the system and supply stable output voltage, which is of larger value of engineering application.
Key words :DC-DC converter;slope compensation;peak current mode;dynamic response

峰值电流控制模式的DC-DC变换器因其动态响应快、输出电压稳定,在开关电源中广泛应用。当其占空比小于50%时,系统能够稳定工作;但是当占空比大于50%时,系统就不能稳定工作了。基于此,利用斜坡补偿技术,提出一种基于BOOST型DC-DC变换器的斜坡补偿电路,用以解决系统不稳定的问题。该电路结构简单,实现方便,提高了系统的稳定性。
1 斜坡补偿结构及原理
1.1 BOOST型DC-DC变换器

BOOST型变换器也被称为升压型变换器[1-2],其传统结构如图1所示。

参考文献[3]提出,当开关管M导通时,电感L上有电流流过并存储电能,二极管VD截止,电容C给负载提供电能。当开关M截止时,电感L上产生相反的电动势,此时二极管VD导通,电感L通过二极管VD向负载R释放电能,并为电容充电。
1.2 整体电路环路结构
参考文献[4]指出,峰值电流控制模式的DC-DC变换器具有动态响应快、输出电压稳定等许多优点。因此采用峰值电流控制模式的DC-DC变换器[5],如图2所示。


2 斜坡补偿电路的实现
2.1 电路原理分析

本设计的斜坡补偿电路如图4所示。电路正常工作时,基准电流信号I_SLOPE通过电流镜M1、M2、M3、M7镜像到M7的漏极,因此M7漏极电流值为I1不变[9];误差放大器产生的误差放大信号VE通过一个源跟随器(由放大器和MOS管M6组成)将电压跟随到电阻R1上,图4中R和C为放大器的补偿。此时,R1上的电压不变,因此流过R1上的电流I2也不变。SLOPE为OSC模块产生的锯齿波信号,该信号通过R2产生一个锯齿波电流信号I3,电流I3通过电流镜M9、M8镜像到M8的漏极电流I4。由于电流I1不变,因此电流I4的改变导致M6漏极电流I5的改变,由此产生一个锯齿波电流信号,该电流通过电流镜M5、M11镜像为电流I6,再通过MOS管M12输出,最终产生一个斜坡电压VC用于斜坡补偿。
图4中,TRIM_SLOPE用来调节电流镜M8、M9的比例系数,最终调节输出斜坡电压的幅值。当TRIM_SLOPE为低时,M14导通,M13并联在M5两端,电流镜M5、M11比例系数为2:1;当TRIM_SLOPE为高时,M14截止,电流镜M5、M11比例系数为1:1,实现微调斜坡电压的功能。

图5是上图斜坡补偿电路中运算放大器的内部电路,该电路采用折叠共源共栅型运放完成相应功能。

本文针对现有补偿电路结构复杂、补偿效果差的缺陷,设计了一种基于BOOST型DC/DC变换器的斜坡补偿电路。该电路具有电路结构简单、补偿效果稳定的特点。利用VIS标准0.4 μm BCD工艺进行仿真,结果表明,通过该斜坡补偿电路可以满足系统稳定输出的要求。该电路可用于BOOST型DC-DC的LED驱动电路中,具有较高的实用价值。
参考文献
[1] ZHANG Z,THOMSEN O C,ANDERSEN M A E.Softswitched dual-input DC-DC converter combining a boost half-bridge cell and a voltage-fed full-bridge cell[J].IEEE Transactions on Power Electronics,2013,28(11):4897-4902.
[2] 张彦科,鲍嘉明.一种基于升压DC-DC变化器的白光LED驱动芯片[J].微电子学,2011,41(4):525-527.
[3] 王松林,田锦明,来新泉,等.高效同相的降压-升压DC/DC转换器的控制方法[J].仪表技术与传感器,2006,7(20):54-60.
[4] 罗鹏.采用峰值电流模PWM控制的BOOST型DC-DC转换器的设计[D].西安:西安电子科技大学,2010.
[5] 梁鼎,张小平.新型Buck-Boost矩阵变换器的自抗扰控制策略[J].仪表技术与传感器,2013,4(4):77-80.
[6] KONDRATH N,KAZIMIERCZUK M K.Control current and relative stability of peak current-mode controlled pulse width modulated dc-dc converters without slope compensation[J].IET Power Electronics,2010,3(6):936-946.
[7] Liu Jiaying,Wu Xiaobo.A novel piecewise linear slope compensation circuit in peak current mode control[C].IEEE Conference on Electron Devices and Solid-State Circuits,2007.
[8] KONDRATH N,KAZIMIERCZUK M K.Loop gain and margins of stability of inner-current loop of peak currentmode-controlled PWM dc-dc converters in continuousconduction mode[J].IET Power Electronics,2011,4(6):701-707.
[9] 李帅,张志勇,赵武,等.一种用于Buck DC-DC转换器的自适应斜坡补偿电路[J].电子技术应用,2010,36(2):51-57.

此内容为AET网站原创,未经授权禁止转载。
Baidu
map