kaiyun官方注册
您所在的位置: 首页> 可编程逻辑> 设计应用> 基于双核Nios II系统的数字预失真器设计
基于双核Nios II系统的数字预失真器设计
来源:电子技术应用2012年第6期
曾德军,石栋元,李金政,夏 威,何子述
电子科技大学 机械电子工程学院,四川 成都611731
摘要:设计了一种基于双核Nios II系统的数字预失真器(DPD)。在FPGA中构建多查找表结构,实现了基于记忆多项式模型的DPD;采用双核处理器完成并行RLS算法处理,保证了DPD模型参数提取过程的执行效率。实验结果证明,该系统能够对功放的非线性进行较好补偿。
中图分类号:TN919.8
文献标识码:A
文章编号: 0258-7998(2012)06-0010-03
A digital predistorter based on the dual core Nios II system
Zeng Dejun,Shi Dongyuan,Li Jinzheng,Xia Wei,He Zishu
School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 611731,China
Abstract:A novel implementation, based on the memory polynomial and multi look-up tables of adaptive digital predistorterdevice(DPD) is presented in this paper and realized in a Dual-core Nios II processor. With the parallel recursive least square(RLS) algorithm realized in two Nios II cpus, the efficiency of computation of parameters extraction process in DPD is greatly improved. Moreover, the results of experiment suggest that the implementation proposed by this paper can well compensate the nonlinearity of the power amplifier.
Key words :digital predistorter(DPD);power amplifier(PA);system on programmable chip(SoPC);dual core Nios II;parallel recursive least squares(RLS) algorithm

摘 要:设计了一种基于双核Nios II系统的数字预失真器(DPD)。在FPGA中构建多查找表结构,实现了基于记忆多项式模型的DPD;采用双核处理器完成并行RLS算法处理,保证了DPD模型参数提取过程的执行效率。实验结果证明,该系统能够对功放的非线性进行较好补偿。
关键词:FPGA数字预失真器(DPD);功率放大器(PA);片上可编程系统(SoPC);双核Nios II;并行递归最小二乘(RLS)算法

在现代无线通信系统中,功率放大器(PA)是整个发射机中最为关键的部件之一。然而,PA固有的非线性特性会对通信质量造成严重影响。数字预失真技术作为一种高效的功放线性化方法,近年来得到了广泛重视和研究[1-4]。
传统的数字预失真器一般采用FPGA+DSP的方案,结构较为复杂,成本较高。本文在FPGA芯片中构建了SoPC系统,设计了一个自适应数字预失真器(DPD),它具有集成度高、成本低等优点。同时,采用并行RLS算法提取DPD模型参数,降低了传统RLS预失真算法的复杂度。采用双核Nios II并行操作,提升了硬件处理速度,保证了预失真处理的实时性和敏捷性。
1 DPD多查找结构
本文采用记忆多项式模型[5]作为DPD的行为模型,表示为:


表 2对比了传统RLS算法与并行RLS算法在加法和乘法运算量上的差异。相对于传统RLS算法,并行RLS算法的最大优势在于降低了矩阵维数,故减小了运算复杂度。

从表2可知,并行RLS算法的q值越大,算法复杂度的优化程度越高。然而,多次仿真实验证明随着q值的增加,并行RLS算法的收敛速度会变慢,性能也会受到影响。经过综合权衡后,本文使用q=2时的并行RLS算法,并采用双核Nios II进行实现,其架构如图2所示。

在并行RLS算法中,主要的滤波过程和算法更新过程都是完全独立的,可以在CPU1和CPU2中并发执行。并行RLS算法涉及到的交互数据放在共享存储区内,双核可以通过互斥机制访问。
图3为基于查找表的DPD在双核Nios II系统中的实现结构。该系统的工作状态可以经历如下阶段:

(1)DPD学习过程:DPD不加入传输链路,基带信号直接上变频后输送至PA,双核Nios II收集基带信号和PA反馈信号。
(2)并行RLS算法处理过程:双核Nios II按照图2的步骤求解出DPD模型参数向量a。
(3)查找表更新过程:将a的元素值代入方程式,通过双核Nios II计算出查找表的表项值,并将表项值写入查找表RAM中,完成更新。
(4)DPD工作过程:DPD加入传输链路,构成DPD+PA的完整预失真系统。基带信号通过查表完成预失真操作。
3 系统功能验证
本实验中采用的功放的中心频率为710 MHz,线性增益为43 dB,1 dB压缩点为-8.5 dBm;DPD模型的多项式阶数为3,记忆深度为2,输入到PA的测试信号是具有5 MHz带宽的WCDMA信号。
通过图4和表3可见,WCDMA信号在未加入DPD前,其邻道频谱干扰严重,ACPR只有19 dB。但加入DPD后,信号的带外杂散信号得到抑制,且ACPR改善量在15 dB~20 dB之间。同时,加入DPD后系统的NMSE得到明显改善,WCDMA信号带内失真得到了控制。实验测试表明,DPD的预失真效果理想,达到了预期设计目的。

本设计在FPGA芯片中实现了一个基于双核Nios II的自适应数字预失真器(DPD)。该系统稳定可靠,能够对功放的非线性进行较好的补偿,且能够抑制信号经过功放后的带外频谱滋生,同时提高了信号在带内频谱的平坦度。
参考文献
[1] HONG S,WOO Y Y,KIN J,et al.Weighted polynomial digital predistortion for low memory effect doherty power amplifier[J].IEEE Transaltions on Microwave Theory and Techniques,2007,55(5):925-931.
[2] YOUNES M,HAMMI O,KWAN A,et al.An accurate complexity-reduced “PLUME” model for behavioral modeling and digital predistortion of RF power amplifiers[J].IEEE Transactions on Industrial Electronics,2011,58(4):1397-1405.
[3] GUAN L,ZHU A.Dual-loop model extraction for digital predistortion of wideband RF power amplifiers[J].IEEE Microwave and Wireless Components Letters,2011,21(9):501-503.
[4] GILABERT P,MONTORO G,BERTRAN E.FPGA implementation of a real-time NARMA-based digital adaptive predistorter[J].IEEE Transactions Ciruits And System,2011,58(7):402-406.
[5] DING L,ZHOU G T,MORGAN D R.A robust digital baseband predistorter constructed using memory polynomials[J].IEEE Transactions on Communication,2004,52(1):159-165.
[6] 刘宁.功放数字预失真算法研究及硬件实现[D].成都:电子科技大学,2011.
[7] GILABERT P L,CESARI A,MONTORO G,et al.Multilookup table FPGA implementation of an adaptive digital predistorter for linearizing RF power amplifiers with memory effects[J].IEEE Transaction on Microwave Theory and Technigues,2008,56(2):372-384.
[8] CHATURVEDI A K,SHARMA G.A new family of concurrent algorithms for adaptive volterra and linear filters[J].IEEE Transactions on Signal Processing,1999,47(9):2547-2551.

此内容为AET网站原创,未经授权禁止转载。
Baidu
map