kaiyun官方注册
您所在的位置: 首页> 测试测量> 设计应用> 创建基于NI PXI及LabVIEW的磁振成像系统用于诊断婴儿脑活动
创建基于NI PXI及LabVIEW的磁振成像系统用于诊断婴儿脑活动
Christopher G. Atwood
Tristan Technologies, Inc.
摘要:创建适应性强的高速多通道NI PXI数据采集系统,通过NI MXI-3总线将实时数据传输到远程控制器,采用基于NI LabVIEW的软件进行数据处理。
关键词: 虚拟仪器 PXI CompctPCI NI
Abstract:
Key words :
NI" title="NI">NI" title="NI">NI硬件配置。

可轻松配置的NI硬件

我们的机械工程师搭建了一个婴儿尺寸的头托,可容纳将近100个SQUID传感器,通过液态氦冷却,并由真空隔离。传感器上的模拟信号输送到PXI机箱中的NI高速24位数据采集设备(NI PXI-4472 DSA)。我们采用PXI 机箱中的背板总线传输所有通道间的同步采集数据,这对于成功绘制脑活动图非常关键。采集到的数据被连续写入存储器,通过光纤MXI-3总线进行直接存储器读取,在远程计算机上实现数据处理。我们采用ni.com上的共享案例来配置软硬件,仅用大约数分钟时间即可实现基本采集功能。

LabVIEW库节省开发时间

系统的数据处理及数据显示依赖于灵活的研究模型,现在却需要尽量简化以备临床使用。LabVIEW使之成为可能。我们采用LabVIEW自带的丰富矩阵函数库编写了噪声抑制算法,并使用了NI高级信号处理工具集中的功能。通过详细的文档及大量案例,快速完成了软件开发。我们还在软件中直接集成了已有的图形化工具,实现常用的数字滤波、小波设计、联合时频域分析。综合以上所有软件组件,我们消除了通道间的信号相关性。此外,我们实现了对重复刺激信号的同步平均。所有这些功能极大的降低了噪声水平,从而使我们能够直接获得脑部信号。

LabVIEW代码的高效性

我们希望能在数据采集的同时处理并显示数据,让医生可以通过调整头部位置,或调整刺激的种类(如皮肤表面的气鼓或声波模式),进而影响脑活动,实现一系列测量。这就要求极高的数据处理速度,但我们发现,只要注重LabVIEW代码的效率问题,采用商用双Xeon 2.6 GHz机器就能满足需求。原始数据也可同时传输到磁盘,软件的设计使得医生可通过简单调节旋钮将输入数据源选择为来自PXI机箱的实时数据、保存至文件的原始数据、计算后的仿真数据。不同数据源的数据以同样的方式输入软件,通过噪声抑制算法,并最终显示。此外,同样的软件还能在任意桌面PC上安装,为医生进行数据分析提供便利,从而用户也无需为此去学习不同的软件包使用方法。

LabVIEW图表功能的灵活性

我们采用了LabVIEW图表组件。举例来说,我们采用了:

  • 标签中的子面板,使用户能够快速地在多个显示间切换,将图表置于独立可调整大小的窗口中,并可任意裁剪,从而保证显示的条理性和灵活性。
  • 标签下多种不同的图表类型,凸显不同的数据。
  • 3D图表以准实时的方式同时显示头部及传感器。通过光学方法检测婴儿头部在头托传感器阵列中的自然移动,由 LabVIEW软件计算并绘制头部相关于传感器的位置,并对移动进行补偿。
  • 3D图表用于显示准实时的阵列计算。
  • 动态加载分析 VI,用户可自行编写算法以及显示,并自由调用(用于主程序运行中的代码编辑,或用于快速测试及评估)。
  • 例行分析工具库加载简化系统在临床中的使用。

2004年11月14日下午7:44,我们见证了世界上第一个无屏蔽的婴儿脑磁信号。我们成功了。

成像系统的未来

我们计划开发相关的多通道数据采集系统。使用NI PXI硬件我们可以根据需要拓展或减少通道数量。LabVIEW可使我们自由地将软件移植到其它操作系统上,并可轻松将本地语言显示转化为其它语言。现在,我们的用户能够拥有一台便宜的磁振成像系统,可迅速用于婴儿的临床试验及医院诊疗。他希望系统能够直接评估药物的功效,并辅助外科手术定位。

此内容为AET网站原创,未经授权禁止转载。
Baidu
map