摘要:基于虚拟仪器技术,利用热电偶设计了一套温度测量系统,包括硬件和软件设计,硬件包括对热电偶输出信号的放大和滤波,以及对冷端温度的补偿电路,冷端温度通过Pt100热电阻进行测量;软件采用Labview进行编写,界面简洁,可通过图形化的界面对温度进行实时监测。
关键词:虚拟仪器;热电偶;温度测量;Labview
0 引言
热电偶是温度测量仪表中常用的测温元件,测温时,热电偶直接与被测对象接触,不受中间介质的影响,因此测量精度高。常用的热电偶从-50℃~+1 600℃均可连续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2 800℃(如钨-铼)。另外,热电偶通常由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。所有这些优点使得热电偶成为工业上最常用的温度检测元件之一。
虚拟仪器是计算机技术和仪器测量技术相结合的产物,它充分利用计算机强大的运算处理功能,突破了传统仪器在数据处理、显示、传输、存储等方面的限制。本文利用虚拟仪器平台,通过编写Labview软件对温度进行测量,可以减少硬件的重复开发,有利于系统的维护,也便于系统软件升级。
1 热电偶测温原理
热电偶测温基本原理是将两种不同材料的导体或开云棋牌官网在线客服焊接起来,构成一个闭合回路。如图1所示。由于两种不同金属所携带的电子数不同,当两个导体的两个连接点之间存在温差时,就会发生高电位向低电位放电现象,因而在回路中形成电流,温度差越大,电流越大,这种现象称为热电效应,也叫塞贝克效应。热电偶就是利用这一效应来工作的。如果两个接点的温度相同,则不会产生电流。
图1中,由两根不同导线A和B组成电路,连接成的接点温度分别为t和t0,则电路中产生的热电势等于接点的电动势之差,如下式:
热电偶用于探测温度的一端称为“热端”,处于标准温度的一端称为“冷端”,国际公认的标准冷端温度为0℃,但是在工业现场,要将冷端温度处理成0℃不太现实,因此必须对冷端进行补偿。对于冷端温度为t1的情况,可按下式进行处理:
式(2)中,E(t,0)表示热电偶热端温度为t,冷端温度为0时的热电势;E(t,t1)表示热端温度为t,冷端温度为t1时的热电势,E(t1,0)表示热端温度为t1,冷端温度为0时的热电势,根据实际测试得到的冷端温度,查分度表可求得E(t1,0),E(t,t1)可直接测得,这样就可以求出E(t,0),再查分度表即可得到热端的温度。
2 系统硬件设计
系统硬件由热电偶、信号调理模块、数据采集卡、PXI机箱组成,如图2所示。本设计采用K型热电偶,使用温度范围为-200℃~1200 ℃,其输出电压信号为mV级,因此,信号调理模块包括信号放大电路、滤波电路以及冷端补偿电路。热电偶测试的冷端补偿通常有两种方式:硬件补偿和软件补偿,本设计采用软件补偿的方式。
采用差动输入的方式将热电偶输出信号连接到仪表放大器上,热电偶满量程输出信号为100mV,数据采集卡的输入电压范围为-10V~10V,因此设计仪表放大器的放大倍数为100。为了减少噪声,采用2阶有源低通滤波器对放大器的输出信号进行滤波,滤波器的截止频率为2Hz。另外,为了抑制放大器的零点漂移,设置一个基准调节电路,将放大器的基准电压稳定在5 V,减小放大器自身引入的误差。电路原理图如图3所示。
金属的电阻随温度的上升而增加,利用此特性制成的传感器称为热电阻,很多材料可制作热电阻温度传感器,其中最常用的材料为铂,铂电阻的电阻率高、电阻与温度成线性关系、测温范围广、精度高。目前常用的铂电阻有两种:Pt100和Pt10,Pt100铂电阻在温度为0℃时电阻为100 Ω,100℃时电阻为138.51Ω,Pt10在温度为0℃时电阻为10 Ω,本设计采用Pt100对冷端温度进行测量,将测得的冷端温度送给计算机,通过软件计算进行补偿。冷端温度测量电路如图4所示。
3 系统软件设计
系统软件采用Labview图形化语言进行编写,程序流程如图5所示。
为了消除冷端温度变化引起的误差,对每次采集的100个冷端电压值求平均,再通过公式将电压值转换为Pt100的电阻值,然后查找Pt100分度表将电阻值转换成温度值,通过查找分度表确定温度的方法存在较大误差,不能满足需要精确测量温度的情况,因此必须寻求更加有效的方法求解冷端温度。Labview自带功能强大的运算函数,包括曲线拟合函数。可利用函数(General Polynomial Fit.vit,位于数学-拟合面板)对Pt100的分度表进行二次拟合,得到一个二次方程:T=aR2+bR+c(T为温度,R为电阻值,a,b,c为拟合得到的结果),将R代入该公式即可自动求得温度值。计算出冷端温度后,通过查找热电偶分度表可得到E(t1,0),进而得到E(t,0)。同样,对热电偶分度表,也可以从中均匀地选出一组值进行二次拟合,作为温度查询程序。
得到热端温度后,根据预先设置的温度上限和下限自动判断是否在正常的范围内,如果超过温度上下限,系统会发出警报,若在正常范围内,则进行显示。另外,程序可以对采集得到的数据进行保存,数据格式为.tdms格式,并且可以对保存的数据进行查询和波形回放。
试验的结果表明,该软件通过简洁友好的界面,可以很好地对温度进行实时检测,用户可直接观察温度变化过程,并且可以对测试结果进行保存和查询。
4 结束语
本文基于虚拟仪器技术进行温度测量系统设计,系统结构简单,易于维护,并且有很强的通用性,系统硬件可以设计成标准模块,搭建新系统时可直接利用,软件可根据用户需求进行适当修改,整个系统可用于某些恶劣环境下的温度测量,具有一定的推广价值。