kaiyun官方注册
您所在的位置: 首页> 可编程逻辑> 设计应用> 基于SoPC的超声导波激励信号发生器设计
基于SoPC的超声导波激励信号发生器设计
来源:电子技术应用2011年第7期
张轩硕, 王建斌, 王军阵
(军械工程学院 电气工程系, 河北 石家庄 050003)
摘要:基于SoPC技术设计了一种专门激励管道超声导波的信号发生器。重点阐述了导波专用DDS IP核的设计方法。发生器以MicroBlaze软核处理器为控制核心,单片FPGA辅以必要的少量外围硬件电路,易于扩展升级。实验结果表明,输出的信号精度高、噪声小、稳定性好,频率连续可调,可方便地应用于管道超声导波检测。
中图分类号:TP274
文献标识码:A
文章编号: 0258-7998(2011)07-082-04
Design of signal generator for exciting ultrasonic guided waves based on SoPC
Zhang Xuanshuo, Wang Jianbin, Wang Junzhen
Department of Electrical Engineering,Ordnance Engineering College, Shijiazhuang 050003,China
Abstract:A signal generator,devoted to excite ultrasonic guided waves in the pipeline,is designed based on SoPC technology in the paper. The design method of DDS IP is elaborated mainly. The generator which is made up of a piece of FPGA chip and a few necessary peripheral hardware circuits , using the MicroBlaze soft core as the central processor, is easy to expand. The experiment results show that the output signal is high precision, low noise, good stability, and the frequency can be adjusted continuously. It can be conveniently applied to ultrasonic guided waves inspection in the pipeline.
Key words :SoPC;MicroBlaze;DDS;ultrasonic guided waves;exciting signal


在管道缺陷检测当中,超声导波检测技术与传统无损检测方法相比具有沿传播路径衰减小,传播距离远,引起的质点振动能遍及构件内部和表面的特点,因此表现出更大优势[1]。超声导波在传播过程中存在多模态和频散特性,若激励源选择不当,导波发生严重频散,会使回波信号变得极为复杂,不利于缺陷分析。根据导波频散特性曲线可知,在50 kHz~500 kHz范围内,L(0,2)模态超声导波传播速度最快最稳定,几乎不发生频散。用汉宁窗调制该频段内一定周期数的单音频信号,形成窄带脉冲作为激励源,激励出L(0,2)模态占主导的超声导波,可最大限度地避免频散带来的不利影响[2]。
目前出现了多种超声导波激励信号发生器设计方案。一是利用多功能函数发生器如HP33120A[3]实现。由于HP33120A存储长度有限,长距离检测时脉冲间会出现干扰,最高调制频率不高[4]。二是采用单片机控制DDS芯片设计,精度较高,但定制性较弱,且一般需要两片以上DDS芯片,成本昂贵。还有一种方法是用高速单片机控制D/A转换芯片直接输出信号,方便易行,然而精度较低,激励频率受到单片机频率限制,而且很难做到连续可调。为了解决上述设计方案的不足,本设计在Xilinx公司FPGA(现场可编程门阵列)上,以MicroBlaze软核处理器为控制核心,借鉴直接数字频率合成DDS(Direct Digital Frequncy Synthesis)技术,给出了一种产生L(0,2)模态超声导波激励信号源的SoPC(System on Programmable Chip)实现方法。所得激励源精度高,汉宁窗调制下的单音频正弦波周期数可调,频率连续可调。
1系统整体方案设计
本系统以Xilinx公司Spartan 3E-Starter开发板为硬件平台。此开发平台外设资源较为丰富,通过增加少量的外围设备即可实现系统设计。Spartan 3E系列FPGA是Xilinx 公司性价比最高的FPGA芯片,可较好地满足产品的高集成化与低成本化[5]。其内部MicroBlaze软核处理器采用功能强大的32位流水线RISC结构,包含32个32位的通用寄存器、2个32位特殊寄存器,可具有3/5级流水线。时钟频率高达150 MHz。以IBM CoreConnect技术为基础,提供了丰富的接口资源。其中PLB(处理器本地总线)总线提供对片上外设、外部存储器以及基于硬件描述语言编写的算法模块的访问 ,和其他外设IP核一起,完成嵌入式的SoPC开发。超声导波激励源的SoPC实现结构如图1所示。

FPGA实现所有数字电路部分。MicroBlaze软核处理器是系统的控制核心,通过LMB(本地存储器总线)访问程序存储空间BRAM,PLB总线挂载所需IP核。例化GPIO接口连接键盘,负责激励信号的频率设置。LCD1602用于当前频率值显示。自主编写的DDS IP为系统波形发生的核心,直接产生激励源波形。MDM为系统的调试模块,RS232用于和PC机通信或程序调试。使用Xilinx嵌入式开发套件EDK自带的数字时钟管理DCM(Digital Clock Manager) IP核,把50 MHz输入时钟分频,分别为DDS模块和外部高速数模转换芯片DAC902提供稳定的5 MHz和50 MHz时钟信号。程序通过JTAG下载到FPGA内部的BRAM,或者片外PROM中存储。FPGA产生的数字信号经过DAC902转换为模拟信号,再经过低通滤波器去噪,即可获得高质量的超声导波激励信号源。


2 超声导波DDS IP核设计
2.1 DDS算法原理

DDS是根据采样定理,通过查找表方法产生波形。通常为正弦波、余弦波、三角波或方波等。完整的DDS结构示意图如图2所示。在参考时钟的驱动下,N bit相位累加器对频率控制字K进行相位累加,得到的相位码对波形存储器寻址,使之输出相应的波形幅度值。将该值送给DAC和低通滤波器LPF,实现量化幅值到一个平滑信号的转换。当相位累加值大于2N时,相位累加器产生一次溢出,溢出频率就是DDS的输出频率。输出信号频率fout可表示为:



  由DDS原理可知,相位累加器的位数N决定 DDS 的精度。N值越大,DDS的频率间隔?驻f就越细。但N值增加,所需ROM 容量也将成指数增加。实际上在一般系统中,D/A转换器的位数m是一定的,通常选取累加器的输出位数N=m+2,即可满足需要[6]。设计中DAC902为12 bit,取累加器为14 bit,调制脉冲最大幅值为212, 即4 096。借助 Matlab,生成由汉宁窗调制10个周期正弦波的窄带脉冲波形,如图3所示。

本设计基于DDS技术,采用Verilog HDL 硬件描述语言设计直接产生导波激励波形的DDS模块,顶层原理如图4所示。

L(0,2)模态超声导波的50 kHz~500 kHz频率是指单音频信号频率(如图3所示,10个周期, 设单音频率为f0),而非DDS输出频率fout。由Tout=10T0,得fout=f0/10。所以DDS输出fout应为5 kHz~50 kHz。系统主时钟为50 MHz,在DDS输出最高频率为50 kHz时,为实现0.3 kHz(单音频3 kHz) 步进值,10周期窄带脉冲取样点数不少于100点,以减小失真,则时钟频率必须大于4.9 MHz。将系统主时钟10分频,得到5 MHz DDS时钟频率。频率控制字取8 bit就可满足要求。
累加器模块Accu对频率控制字K累加,并将结果的低14位sum[13:0]送给下一级Reg寄存器,作为ROM地址。Accu的最高位sum[14]为判断位。在累加过程中,当相位sum[14]为1时,累加器清零,完成一次脉冲发射。然后通过一个计数器实现延时功能,使激励脉冲每隔1 ms发射一次。
  ROM模块采用ISE中ROM IP核直接定制。如果在系统中添加多个ROM,每个ROM中分别载入不同周期的调制脉冲,可实现激励源的周期可调。借助Matlab,把图3窄带脉冲量化成 12 bit 的定点波形数值,形成.coe 文件并加载到ROM中。
将频率控制字K设为23时,输出频率fout等于7 kHz,对应单音频信号为70 kHz。Modelsim仿真波形如图5所示。

3系统硬件实现
3.1 外设IP核挂载
利用EDK的XPS,创建MicroBlaze硬件平台。通过Base System Builder Wizard快速添加配置,如RS232、GPIO、BRAM等。对于自主编写的DDS模块,使用Create/Import Peripheral工具,适当修改user logic 和IPIF两个自动生成文件,可将自己的逻辑模块挂接在PLB总线上,无需过多关心自定义IP与PLB总线的协议和接口逻辑。在XPS中添加自带的DCM时钟管理模块,为DDS IP和DAC提供精确稳定的时钟输入。最后为所有外设分配地址,建立端口连接。


4 软件设计
软件部分在SDK中通过C语言编写完成,主要包括初始化、GPIO口键盘值读取、LCD显示、DDS频率字输入和调节等。由于导波频率在50 kHz~500 kHz,跨度较大。为方便实际检测,设计了频率粗调和微调功能。系统键盘包括设置键(Set)、粗调键(Adjust)、微调键(Fine)、确认键(OK)以及复位键(Reset)。上电后,频率控制字K为初始值16,系统产生50 kHz默认频率激励信号。每按一次粗调键(Adjust),K值增加,分别对应70 kHz、120 kHz、170 kHz等基数频率。用微调键(Fine)以3 kHz为步进值进行细调。通过写寄存器语句DDS_IP_mWriteReg将K值赋给DDS模块,产生相应频率激励信号。程序流程如图8所示。


5 实验结果分析
系统上电后,在键盘上选择激励频率值为70 kHz,使用NI PCI-5102数字化仪的虚拟示波器对输出信号进行采集和分析。捕捉到的激励信号如图9所示。由面板参数可知,波形最高幅值1.5 V,包含10个周期单音频信号的窄带脉冲宽度约为0.142 ms。改变键盘输入,对输出信号进行FFT频谱分析,如表1所示。实验结果表明,此设计产生的激励信号精度高,波形纯净,性能良好,频率连续可调,较好地满足了设计要求。

利用SoPC技术,给出了一种新的超声导波激励信号发生器的设计方法。重点论述了导波专用DDS模块的实现过程。把系统的主要功能集成在单片FPGA内,减少了外围电路,体积小,功耗低,抗干扰能力强,易于扩展和升级,有效降低了设计成本。产生的激励信号精度高,稳定性好,频率连续可调。本设计可方便地应用到管道超声导波缺陷检测中,并为开发小型化、集成化的导波检测系统提供了可能。
参考文献
[1] 吴斌,邓菲,何存富. 超声导波无损检测中的信号处理研究进展[J].北京工业大学学报,2007,33(4):342-348.
[2] 王军阵,王建斌,王帅. 基于DS89C430的超声导波激励信号源的设计[J].电子设计工程,2010,18(10):136-138.
[3] 吴斌,王智,金山,等.用于激励超声导波的任意波形发生器[J].北京工业大学学报,2002,28(4):389-393.
[4] 金传喜,武新军,夏志敏,等.导波检测用激励源的设计与应用[J].制造业自动化,2006,28(10):79-81.
[5] 田耘,胡彬,徐文波,等.Xilinx ISE Design Suite 10.xFPGA开发指南——逻辑设计篇[M].北京:人民邮电出版社,2008:27-29.
[6] 王金明.数字系统设计与Verilog HDL(第三版)[M].北京:电子工业出版社,2009:285-286.

此内容为AET网站原创,未经授权禁止转载。
Baidu
map