kaiyun官方注册
您所在的位置: 首页> 通信与网络> 业界动态> SDH接口芯片PM5342及其应用

SDH接口芯片PM5342及其应用

2009-04-24
作者:丛 凯 李 铮 刘兴春

摘 要:PM5342是加拿大PMC-Sierra公司生产的用于光同步数字系列SDH的接口芯片。介绍 了该芯片的主要功能特性、内部结构及主要工作时序,指出了使用中应注意的关键问题,并简要阐述了PM5342在一个SDH净荷处理系统中的应用。

关键词:SDH PM5342 净荷提取

光同步数字系列SDH(Synchronous Digital Hierarchy)是新一代的传输网体制。它有效地结合了高速大容量光纤传输技术和智能网络技术,不仅充分显现出光纤通信容量大、抗干扰能力强、保密性好、传输距离远等优点,而且突现出其复分接简单、管理信息丰富、组网方式灵活等技术优越性,自二十世纪90年代初出现以来得到了迅速发展。

PMC-Sierra公司的PM5342 SPECTRA-155是一款新型的SDH/SONET专用接口芯片,可用来实现STS-1(STM-0/AU3)及STM-1帧中的净荷提取及定位功能。该芯片具有较高的集成度,将定时提取模块、串/并转换模块、段开销处理模块及通道开销处理模块等集成到一起,功能非常强大。实践证明该芯片性能可靠、使用方便,是开发SDH产品的较优选择。

为便于理解PM5342的功能及内部结构,在此以STM-1为例对SDH的帧结构作一简单介绍。SDH采用的是以字节结构为基础的矩形块状帧结构,其结构安排如图1所示。

如图所示,STM-1的帧结构是9行×270列的块状帧结构。其中,RSOH为再生段开销;MSOH为复用段开销;AUPTR为管理单元指针;POH为通路开销。图中纵向前9列横向第1至第3行和第5至第9行的72个字节全部分配给段开销。

本文将介绍PM5342的功能特性及其使用中应注意的问题,并给出一个PM5342在SDH净荷处理系统中的应用实例。

1 SDH/SONET净荷提取/定位芯片PM5342

1.1 PM5342的主要特性

·用于STS-1(STM-0/AU3)、STM-1/AU3 (STS-3)及STM-1/AU4 (STS-3c)信号的净荷提取/定位,根据工作模式的不同,分别提供速率为19.44Mb/s、38.44Mb/s或51.84Mb/s的系统端并行数据接口;

·终结STS-1及STM-1帧中的所有段开销以及高阶通道开销,根据工作模式的不同,提供速率为51.84Mb/s或155.52Mb/s的线路端串行数据接口;

·SDH每一帧中的全部段开销字节可通过一个串行输出端口提取/接入,其中的公务字节E1、E2,使用者通路F1,数据通信通路D1~D3、D4~D12以及自动保护倒换通路K1、K2还有各自的串行提取/接入端口;

·提供灵活多样的开销接入方式,或者由芯片产生,或者插入芯片内部寄存器的值,或者通过引脚接入;

·内部集成有定时提取模块,可通过155.52Mb/s的串行接口直接与光收发模块连接;

·线路端有STS-1、STM-1/AU3及STM-1/AU4等多种工作模式,通过访问内部寄存器来设定;系统端也有字节Telecombus、半字节Telecombus及串行Telecombus等多种工作模式,通过专门的模式引脚来设定;

·把三路串行数据流(例如帧中继或以太网净荷等)独立映射入单路STS-1(STM-0/AU3)或STM-1/AU3净荷;

·支持线路环回和测试环回的工作模式,以便对芯片进行灵活的配置管理和故障诊断;

·提供一个通用的八位微处理器接口来完成5342的初始化配置、工作控制以及状态监测;

·采用集成CMOS工艺,+5V供电低功耗器件,输入兼容PECL和TTL电平,输出为TTL电平;

·256脚SBGA(Super Ball Grid Array)封装。

1.2 PM5342内部结构

PM5342的内部结构如图2所示,大体上可分为三部分:接收部分、发送部分及控制部分。接收部分主要包括:时钟恢复模块CRSI或CDR、接收端再生段开销处理模快RSOP(Rx Section O/H Processor)、接收端复用段开销处理模块RLOP(Rx Line O/H Processor)、接收端高阶通道开销处理模块RPOP(Rx Path O/H Processor)以及接收端Telecombus定位校准模块RTAL(Rx Telecom Aligner)等;发送部分主要包括:发送端Telecombus定位校准模块TTAL(Tx Telecom Aligner)、发送端高阶通道开销处理模块TPOP(Tx Path O/H Processor)、发送端复用段开销处理模块TLOP(Tx Line O/H Processor)、发送端再生段开销处理模块TSOP(Tx Section O/H Processor)以及时钟综合模块CSPI(Clock Synthesis)等;控制部分提供一个可兼容Intel和Motorola总线模式的8位微处理器接口,以便对内部寄存器进行访问。

相应的芯片对外部提供接收通道端口及发送通道端口。接收通道端口包括:串行155.52Mb/s数据接收端口RXD+/-,段开销取出端口RTOH、RSUC、RSOW、RLOW、RSLD、RLD等,高阶通道开销取出端口RPOH[3:1]以及净荷取出端口DD[7:0];发送通道端口包括:串行155.52Mb/s数据发送端口TXD+/-,段开销接入端口TTOH、TSUC、TSOW、TLOW、TSLD、TLD等,高阶通道开销接入端口TPOH[3:1]以及净荷接入端口AD[7:0]。

1.3 工作时序

了解PM5342的工作时序是利用它进行正确设计的重要前提,现将其较为重要的工作时序作一简单介绍。

1.3.1 段开销的提取与接入时序

以STM-1/AU4段开销的接入时序图为例进行介绍。

图3中TTOH引脚输入的信号是5.184Mb/s的串行比特流,由该引脚接入SDH帧中的再生段开销、AUPTR和复用段开销;由TTOHEN引脚输入的是段开销接入使能信号,如果在某一TTOH字节的最高位输入时TTOHEN为高,则将该字节的值接入发送通道相应SDH帧中的对应位置,否则将在该位置接入芯片默认值;TTOHCLK引脚输出的是5.184MHz的时钟信号,在该时钟脉冲的上升沿对TTOH和TTOHEN输入信号进行采样;TTOHFP引脚输出在TTOHCLK的下降沿刷新,指示帧头A1字节,以上四者协同作用完成段开销的接入。

1.3.2 净荷的提取/接入时序

以工作在字节Telecombus 模式下STM-1/AU4净荷的提取为例进行介绍。

图4中DD[7:0]总线输出为19.44Mb/s的STM-1净荷;DPL输出为净荷指示信号,DPL为高时表示此时DD[7:0]输出为净荷VC4,否则为段开销或AUPTR;DC1J1V1输出与DPL信号协同作用以标志STM识别符C1以及高阶通道踪迹字节J1;DCK输入为19.44MHz的时钟信号,DD[7:0]、DPL和DC1J1V1在DCK的上升沿刷新;DFP输入为帧头指示信号。以上诸信号协同作用完成STM-1/AU4净荷的提取。

1.4 中断特性

PM5342只有一个中断请求引脚INTB,但是它能反映芯片内部超过200个可屏蔽中断源的中断请求。PM5342的中断管理是一种层次式结构,INTB之下有顶层中断与底层中断,它们的状态都用相应内部寄存器中的相应位来反映。INTB之下的各顶层中断之间、某一顶层中断属下的底层中断之间都是“或”的关系。

PM5342中断层次结构图如图5所示,位于中断层次图根部的是中断源。通常中断源的状态用相关的内部寄存器中的某一比特位来反映,称为中断源状态位(“V”比特)。“V”比特实时地反映中断源的状态,没有相应的“V”比特的中断源会用其它方式报告自己的状态。每一个中断源在其相关的内部寄存器中都有相应的中断请求标志位(“I”比特)。当中断事件发生时,“I″比特被置位并锁定,直到中断被处理(即该“I”比特所在的内部寄存器被CPU读)后才清零。为了屏蔽无关中断请求,每一个中断请求标志位都有一相应的中断允许控制比特(“E”比特)。当“E”比特被置位时,相应的“I”比特才对INTB或高层中断有贡献;否则,该中断请求被屏蔽。

现以LOS告警引起的中断为例来作一具体说明:中断源LOS在内部寄存器中有一相应的中断源状态位LOSV实时反映该中断源的状态。当检测到LOS告警时,LOSV置位;当LOSV状态改变时,中断事件发生,LOSI被置位;如果此时LOSE已被置位,则LOSI对其高层中断RSOPI有贡献。如果此时RSOPE也已被置位,则芯片将通过INTB引脚发出中断请求;否则LOSI仍然反映LOSV的改变,但对INTB却没有贡献。

许多常用的中断一般都还有一个辅助中断(Auxiliary Interupts),即在另一内部寄存器中有第二个中断请求标志位(“I”比特)以及独立于主中断的中断允许控制位(“E”比特)。辅助中断的请求标志位直接对INTB有贡献,而且它的清除方式也不同于主中断,对其所在寄存器的读操作并不会把该标志位清零,而必须由CPU通过写操作清零。

2 PM5342使用中应注意的关键问题

·该芯片内部兼有模拟电路和数字电路两部分,为了减少两类电路间的干扰以保证芯片正常工作,在进行PCB设计时必须把模拟电源/地与数字电源/地分开;

·电源去耦对于高速电路设计极为关键,尤其是PM5342内部有着极为敏感的模拟电路。建议对每一模拟电源引脚单独去耦以避免噪声在各电源引脚间耦合,在适当的情况下可以采用简化的去耦方案。以下5组模拟电源引脚必须要独立去耦:

#1 TAVD2

#2 RAVD2

#3 TAVD1,3,4

#4 RAVD1,3

#5 QAVD1,2,3

·高速信号线RXD+/-和TXD+/-(155.52Mb/s)应当作微带传输线来考虑,并且必须要端接匹配负载。

3 PM5342在SDH系统中的应用举例

笔者利用PM5342芯片自行设计了相关电路,实现STM-1净荷处理系统的接口功能。其系统框图如图6所示(虚线框内为笔者自行设计实现的部分)。

图中光收发模块采用的是武汉光通信公司的RTXM-155芯片,在接收方向上经RTXM-155完成光电变换,送出155.52Mb/s的电信号,进入PM5342的串行数据输入端口RXD+/-。该光收发模块还对光接收信号的功率进行检测,低于阈值功率时送出光发送失效告警信号。

经光电变换后的STM-1全帧信号进入PM5342的接收通道,经过时钟与数据恢复、串/并转换、帧定位、BIP-8运算及比较、解扰码、段开销与通道开销处理、指针解释与调整以及通道净荷定位等处理步骤后,STM-1净荷由总线DD[7:0]提取,送入净荷处理系统。经段开销处理模块时,STM-1的段开销信号由PM5342的RTOH引脚提取,送入XILINX公司的FPGA芯片XC2S50,根据净荷处理系统的要求,对TTOH作缓存以实现部分段开销的透明传输,如D1~D3、E1、E2及F1等字节。另外,FPGA需对TTOHEN信号的时序特性作适当处理,使得在某些段开销(TTOH信号)字节的对应位TTOHEN为低,以保证这些字节的接入值由芯片自身来产生,而非由TTOH引脚接入,如A1、A2、B1、B2等字节。处理之后的净荷由总线AD[7:0]进入PM5342的发送通道,先进行净荷定位,再进入开销处理模块,此时FPGA送出的段开销经PM5342的TTOH脚接入,之后进行扰码处理、作BIP-8运算、并/串转换及时钟综合,最终由PM5342的串行数据输出端口TXD+/-输出至光收发模块RTXM-155,经电光变换,恢复为STM-1全帧光信号继续在SDH网上传输。

本接口电路中单片机89C52有双重作用,一方面作为本接口电路的控制核心,对PM5342进行初始化配置,通过检测5342的中断请求引脚INTB来监控5342的工作情况,及时地对失光告警、失帧告警及线路告警等异常工作状态作出响应以保证系统的正常工作;另一方面,该单片机受净荷处理系统中的主单片机的控制,通过串口与之通信,接收主机的查询并报告重大异常,以方便主系统的及时处理。

笔者以SDH接口芯片PM5342为核心设计了STM-1净荷处理系统的接口电路,实践证明其控制灵活,外围电路简单,较好地实现了预期功能。

参考文献

1 韦乐平.光同步数字传送网(修订本).北京:人民邮电出版社,1998

2 PM5342 SPECTRA-155 SDH Payload Extractor/Aligner Datasheet.Pmc-Sierra公司,1999

3 PM5342 SPECTRA-155 Programmer's Reference. PmcSierra公司,1999

4 邓忠礼,赵 晖.光同步数字传输系统测试.北京:人民邮电出版社,1998

本站内容除特别声明的原创文章之外,转载内容只为传递更多信息,并不代表本网站赞同其观点。转载的所有的文章、图片、音/视频文件等资料的版权归版权所有权人所有。本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如涉及作品内容、版权和其它问题,请及时通过电子邮件或电话通知我们,以便迅速采取适当措施,避免给双方造成不必要的经济损失。联系电话:010-82306116;邮箱:aet@chinaaet.com。
Baidu
map