kaiyun官方注册
您所在的位置: 首页> 嵌入式技术> 设计应用> DSP实现仿生机器蟹多关节控制系统
DSP实现仿生机器蟹多关节控制系统
王沫楠,孟庆鑫
摘要:DSP实现仿生机器蟹多关节控制系统,仿生机器蟹控制系统需要较高的控制精度和运算速度,以便在机械结构刚度较高的情况下,通过提高响应速度来确保机器人的正常行走和姿态控制。由于在机器蟹腿节和胫节置有两个电机(如图1所示),使其质量较大,同时由
关键词: DSP 仿生机器蟹
Abstract:
Key words :

仿生机器蟹控制系统需要较高的控制精度和运算速度,以便在机械结构刚度较高的情况下,通过提高响应速度来确保机器人的正常行走和姿态控制。由于在机器蟹腿节和胫节置有两个电机(如图1所示),使其质量较大,同时由于体积的限制使得各步行足相互间距较小,因此将造成机器蟹在行走过程中耦合较强,控制模型受躯体位姿、步行足位形和步态等因素的影响较大。这就要求控制系统控制结构灵活,具有调整步行足轨迹和步态的能力,并能适应控制模型的变化。因此必须研制一种具有强大运算处理能力、软硬件结构模块化的机器蟹控制系统。


  1 多层多目标分布式控制概念及控制框架
  仿生机器蟹是一个复杂的控制对象,从体系上讲,其每条步行足都是一个多自由度的串联臂机器人。要实现有效的控制,除要对每条步行足的三个驱动关节进行准确高效的控制外,多条步行足之间还要相互协调,共同完成某一确定工作。同时应考虑到各条步行足运动空间之间的相互重迭、相互干扰所形成的强耦合。
  常用的控制方法有分散控制、分布式控制和递阶控制三种形式。由于递阶控制系统具有控制结构清晰、层次分明的特点,而分布式控制系统便于采用模块化结构且可扩展性好,因此机器蟹控制系统采用递阶控制和分布式控制相结合的控制结构设计。由于其控制结构较复杂,所以将整个控制体系分为任务规划、任务分解、躯体路径规划、运动协调、步行足轨迹规划、运动学/动力学计算、电机伺服控制等多层结构,而且每层之间要通过上层进行运动协调,例如各个步行足之间的运动控制协调,需要步行足控制层通过步行运动协调层交换信息。每条步行足的指关节之间的控制也是如此。因此,机器蟹控制系统采用多层多目标分布式递阶控制系统,如图2所示。
  第一层称为“动机层”,它使得机器人本体能够做到完全的自主。其目的是将由外部环境变化或操作者命令引起的本体内部的响应翻译成对机器人本体的高级命令。第二层是“躯体路径层”,它接收“动机层”给出的高级命令,将其转化为一系列的本体内部的描述量及认知图,进而给出机器人自身躯体的运动路径。第三层称为“步行足轨迹层”,它针对躯体的运动路径给出各个足的具体的运动,包括步态的生成和腿的路径的生成。第四层是“动力实现层”,它通过驱动组件实现由“步行足轨迹层”给出的足的运动,并对由于系统的动力学不确定性和干扰造成的误差进行校正。各层之间,上层向下层输出控制量,由下层来具体实施。每执行一步,下层将状态信息实时地反馈给上层。

步行足伺服控制模块结构框图足端FSR传感器电路图

2.3 步行足足端力信号检测电路
  为了实时获得躯体相对于大地坐标系的位置和姿态信息,步行机器人必须通过大量的外部传感器获得诸如倾角、离地高度等信息。在机器蟹的步行足端部安装了力传感器,利用它检测足端与物体(或地面)的接触力大小,来判断步行足是与外界物体发生碰撞还是接触地面。通过设置碰撞力信号的阈值来判断步行足是可以克服阻力按规划路径继续运动,还是改变运动方式避开障碍,或从摆动相转入支撑相。FSR(Force SensingResistors)是一种聚合体薄膜装置,其电阻值大小与其活性表面所受正压力大小成正比,这种力传感器对力的敏感程度非常高。机器蟹足端FSR检测电路如图5所示。无作用力时,FSR阻值Rs约为50MΩ,


  晶体管导通,Vout输出为低电平,接近于0V;当表面受力时,阻值Rs随力的增加而减小,当Rs值满足晶体管可靠截止条件时,Vout输出高电平。要使晶体管截止?必须满足以下条件: (Vcc%26;#183;Rs)/(R1+Rs)<Vbe,即Rs<(Vbe%26;#183;R1)/(Vcc-Vbe)


  3 单步行足控制系统的软件设计
  在本文设计的机器蟹控制器中,采用分时集中方式和多CPU的结构。步行足控制器采用分时集中方式,由一个CPU对3条步行足的9个关节进行控制,CPU可对各关节的反馈控制策略进行协调控制,完全由软件确立各关节之间的耦合关系。而整个机器蟹的全局控制器结构为多CPU结构,由3个步行足控制器(即3个CPU控制单元)并联成伺服控制层,并由一个中央控制CPU协调控制。机器蟹步行足控制系统的单关节控制过程如图6所示。由PC机(上位机)将每一个动作任务分解为各关节转角,并每隔一个插补时间T1执行一次上下位机指令,将下一个T1时间内各指关节的目标转角指令值发送给DSP控制器(下位机)。DSP控制器将插补时间内的转角按可控精度进行周期为T2的插补细分,细分后所得任务为各个关节电机控制中断程序的实际目标指令,并在插补周期时间内实现电机转角位置伺服控制,从而完成步行足的运动控制。除此之外,控制系统软件还包括步行足轨迹规划运算、系统自检和初始化、故障判断、程序终止、力/位置信号采集处理等功能模块。


  本文以仿生机器蟹为设计对象,提出了基于DSP的机器蟹多层多目标递阶控制系统方案,并对单步行足的软、硬件设计做了详细的阐述,为进一步实现自主式的仿生步行机构奠定了基础。

此内容为AET网站原创,未经授权禁止转载。
Baidu
map