近年来,智能电网、FTTx和3G网络建设是支撑线缆行业蓬勃发展的主动力。智能电网要求电力系统中辅以信息技术为支撑,实现电网的信息化、自动化和互动化的特征;FTTx和3G网络建设要求信息通信的同时解决网络终端设备的用电问题,因此应用于电力系统中兼顾电力传输和信息通信的各类复合缆和特种光缆(本文统称为电力光缆)应运而生。
电力光缆按敷式方式和应用场合可分为三种,即电力线附加型、杆塔添加型和电力线复合型。电力线附加型主要有地线缠绕光缆(GWWOP)和捆绑式光缆(ADL);杆塔添加型主要有全介质自承式光缆(ADSS)和金属自承光缆(MASS);电力线复合型通常是指在传统的电力线中复合光纤单元,实现传统通电或防雷功能的同时进行光纤通信,主要有光纤复合架空地线(OPGW)、光纤复合架空相线(OPPC)、光电混合缆(GD)、光纤复合低压电缆(OPLC)等。
1 、地线缠绕式光缆GWWOP和捆绑式光缆ADL
(1)地线缠绕式光缆GWWOP(Ground Wire Wind Optical Cable)——是一种直接缠绕在架空地线上的光缆,它沿着输电线路以地线为中心轴螺旋缠绕在地线上,形成一种依附于输电线支承的光传输媒介。
(2)捆绑式光缆ADL(All Dielectric Lashed Cable)——是一种通过一条或两条抗风化的胶带、被覆芳纶线或金属线捆绑在地线或相线上。与GWWOP光缆相比,减少了光缆由于弯曲缠绕而引起衰减偏大或应力增加。
图1. GWWOP和ADL光缆安装示意图
这两类光缆被统称为附加型光缆—OPAC(Optical Attached Cable),一般用于35kV以下线路中,早在上世纪80年代初就已经开发并被电力部门所使用,是电力系统中建设光纤通信网络既经济又快捷的方式。他们不是自承式光缆,是附加在原有地线或相线上的,如图1所示,因此该缆具有轻型柔软、且外径小等优点,一般采用全介质中心管式光缆结构,如图2所示,非金属加强层通常采用芳纶纤维纱、玻璃纤维纱和玻璃纤维带等柔性材料。
图2. 常用GWWOP和ADL光缆结构图
这两类缆安装时需要特殊的器具,安装完后,光缆直接与电力线接触,所以都需要承受线路短路时相线或地线上产生的高温,都有外护套材料老化问题,因此虽然研究和应用早于ADSS光缆,但是在国内没有大范围的应用。在线路设计时,还需覆冰和风载校验电力线和杆塔强度。
近年来,智能电网、FTTx和3G网络建设是支撑线缆行业蓬勃发展的主动力。智能电网要求电力系统中辅以信息技术为支撑,实现电网的信息化、自动化和互动化的特征;FTTx和3G网络建设要求信息通信的同时解决网络终端设备的用电问题,因此应用于电力系统中兼顾电力传输和信息通信的各类复合缆和特种光缆(本文统称为电力光缆)应运而生。
电力光缆按敷式方式和应用场合可分为三种,即电力线附加型、杆塔添加型和电力线复合型。电力线附加型主要有地线缠绕光缆(GWWOP)和捆绑式光缆(ADL);杆塔添加型主要有全介质自承式光缆(ADSS)和金属自承光缆(MASS);电力线复合型通常是指在传统的电力线中复合光纤单元,实现传统通电或防雷功能的同时进行光纤通信,主要有光纤复合架空地线(OPGW)、光纤复合架空相线(OPPC)、光电混合缆(GD)、光纤复合低压电缆(OPLC)等。
1 、地线缠绕式光缆GWWOP和捆绑式光缆ADL
(1)地线缠绕式光缆GWWOP(Ground Wire Wind Optical Cable)——是一种直接缠绕在架空地线上的光缆,它沿着输电线路以地线为中心轴螺旋缠绕在地线上,形成一种依附于输电线支承的光传输媒介。
(2)捆绑式光缆ADL(All Dielectric Lashed Cable)——是一种通过一条或两条抗风化的胶带、被覆芳纶线或金属线捆绑在地线或相线上。与GWWOP光缆相比,减少了光缆由于弯曲缠绕而引起衰减偏大或应力增加。
图1. GWWOP和ADL光缆安装示意图
这两类光缆被统称为附加型光缆—OPAC(Optical Attached Cable),一般用于35kV以下线路中,早在上世纪80年代初就已经开发并被电力部门所使用,是电力系统中建设光纤通信网络既经济又快捷的方式。他们不是自承式光缆,是附加在原有地线或相线上的,如图1所示,因此该缆具有轻型柔软、且外径小等优点,一般采用全介质中心管式光缆结构,如图2所示,非金属加强层通常采用芳纶纤维纱、玻璃纤维纱和玻璃纤维带等柔性材料。
图2. 常用GWWOP和ADL光缆结构图
这两类缆安装时需要特殊的器具,安装完后,光缆直接与电力线接触,所以都需要承受线路短路时相线或地线上产生的高温,都有外护套材料老化问题,因此虽然研究和应用早于ADSS光缆,但是在国内没有大范围的应用。在线路设计时,还需覆冰和风载校验电力线和杆塔强度。
2 、全介质自承式光缆ADSS和金属自承式光缆MASS
(1)全介质自承式光缆ADSS(All dielectric self-supporting optical fiber cable)——是一种利用现有的高压输电杆塔,与电力线同杆架设的特种光缆,具有工程造价低、施工方便、安全性高和易维护等优点。
ADSS光缆是自承式架空敷设,应具有较大的抗拉强度,以保证正常运行时能承载外界环境影响。ADSS光缆主要承载元件为芳纶纱线,根据结构可分为中心管式和层绞式两种,其中层绞式结构分为单护层和双护套结构,具体如下图3。
图3.ADSS光缆结构图
ADSS光缆在力学设计时,除具有一定的抗拉强度外,还需考虑一定档距下安装ADSS光缆对地面的安全距离和满负载环境下对地安全距离,以防影响路面正常运作。另一方面,由于高压电力线周围存在着一定的高压电场环境,容易腐蚀损害ADSS光缆,因此ADSS光缆在敷设时不仅要选择适宜的悬挂点,同时外护套也需具有一定的耐电腐蚀能力。根据DL/T 788-2001《全介质自承式光缆》标准要求,外护套可以分为A级(电位小于12kV)和B级(电位大于12kV),其中B级护套(通常称为耐电痕护套料)根据实际应用,一般建议悬挂点运行电位不超过25kV。
(2)金属自承式光缆MASS(Metal Aerial Self-Supporting optical fiber cable)——不锈钢管光纤单元结构,考虑MASS光缆同ADSS光缆一样与现有杆塔进行同杆架设,为减少对杆塔的额外负载,要求MASS光缆结构小、重量轻。因此MASS光缆结构采用中心管式,即不锈钢光纤单元外面绞合一层镀锌钢丝或铝包钢丝,通常从成本考虑,以镀锌钢丝为主,如图4所示。
图4. MASS结构图
MASS光缆在力学设计时与ADSS光缆类似,同样需要进行档距—拉力—弧垂验算。但是在安装敷设时,应选择合适的悬挂点,一方面与电力线保持一定的安全距离;另一方面,因为MASS光缆是金属结构,通过良好的接地处理和选择弱电场安装点,可以方便的解决电腐蚀问题。因为MASS光缆是全金属结构,在一些鼠害猖狂地区,它还可以作为有效的防鼠光缆架空应用。
3 、光纤复合架空地线OPGW和光纤复合架空相线OPPC
(1)光纤复合架空地线OPGW(Optical fibre composite overhead ground wires)——它具有传统地线防雷的功能,对输电导线抗雷电提供屏蔽保护的作用,同时通过复合在地线中的光纤来传输信息。常见的OPGW结构主要有三大类,分别为铝管型、铝骨架型和不锈钢管型,如图5。
图5. OPGW结构图
OPGW的关键技术之一是短路电流引起的温升和OPGW的最高使用温度,图4中前两种结构的OPGW在短路电流冲击时,铝管和铝骨架会产生相对较高的温度且向内部扩散,进而影响光纤传输甚至断纤现象,而不锈钢管型明显改善很多。若结构中含有铝,在超过200℃以后,首先是铝产生不可逆塑性形变,在结构受到破坏的同时,OPGW增大的弧垂不但不能保持与导线的安全间距还将可能与导线相碰,若是全钢结构则可短时工作在300℃。
OPGW在新建线路中应用具有较高的性价比,在设计时,OPGW的短路电流越大时,就需要用更多的铝截面积,则抗拉强度相应降低;而在抗拉强度一定的情况下,要提高短路电流容量,只有增大金属截面积,从而导致缆径和缆重增加,这样就对线路杆塔强度提出了安全问题。但是OPGW设计时其电气性能(如直流电阻)和机械性能(如档距—张力—弧垂特性)应与另一根地线接近。
(2)光纤复合架空相线OPPC(Optical Fiber Composition Phase Conductor)——是将光纤单元复合在相线中,具有相线和通信的双重功能,弥补了新建电网线路中无架空地线却要通信的场合,主要有中心管式和层绞式两种,如图6。
图6 OPPC结构图
虽然OPPC结构与OPGW类似,但是在设计却有很大差异。首先,OPPC由于具有相线的功能,长期承载电力传送,因考虑长期运行温度对光纤传输性能和光纤寿命的影响;其次,OPPC的机械性能和电气性能应与相邻导线一致,如直流电阻或阻抗与相邻导线相似,以保证远端电压变化保持三相平衡;再次,OPPC安装在高压系统中,其安装的金具和附件(如耐张线夹,悬垂线夹和终端接头盒)需绝缘,线夹可用相应的绝缘耐张线串或绝缘悬垂串,光电绝缘/分离和连接则需要特殊的技术,对施工的要求也比较高。
4 、接入网用光电混合缆GD
接入网用光电混合缆GD(Optical and electrical hybrid cables for access network)——俗称综合光缆,它集光纤、金属线对和馈电线于一体,可以同时传输光信号、电信号和电能,其典型结构如图7。
图7 接入网用光电混合缆结构图
随着接入网技术和市场的快速发展,光纤通信开始进入新一轮高速增长阶段, 移动通信、数字电视(中间转换)、宽带接入、FTTx、农村村村通工程等将通信光缆和设备不断地向用户延伸,远端基站、通信机房、用户接入点等设备开始大量应用,而设备的供电却成为通信运营商十分棘手的问题,为解决此问题,中国通信标准化协会发布了YD/T 2159-2010《接入网用光电混合缆》,为该产品的设计和应用提供了理论基础。
虽然我们可以通过GD光缆可以给远端设备供电和传输信息,但是馈电线中存在线路损耗,且随着传输距离的加长而增大,同时还存在着压降问题。因此,高压直流远供电无疑是解决长距离通信的最佳方案。高压直流远供电系统的原理是将机房内开关电源的48 V 直流电通过远供电源局端设备隔离升压到约200~400 V 直流高压,将直流高压电通过GD光缆中馈电线传输到远端设备处,传输过程中电源处于对地悬浮状态,通过远端设备进行电压逆变,变换到远端设备所需电压(如DC48 V 或AC220V),最终实现远端设备正常通信,如图8。
图8 高压直流远端供电原理图
GD光缆在结构设计过程中,主要是馈电线的截面积选取,馈电线的截面积与传输距离、用电设备功率、传输电压等级、远供电设备接收电压范围等有关,线缆设计完后,还需进一步验算线缆损耗,一般线缆损耗功率不超过远供局端设备输出功率的10%为宜。
5、 光纤复合低压电缆—OPLC
光纤复合低压电缆OPLC(Optical Fiber Composite Low-Voltage Cable)——是将经过保护后的光纤单元置于电力线缆中,可用于额定电压0.6/1kV及其以下电力系统中,同时解决光纤信息通信的问题。OPLC倡导的电力光纤到户(Power and Fiber to the home,简称PFTTH),即配合无源光网络(PON)技术,实现电信网、电力传输网、电视网和互联网等“多网融合”的概念完全符合我国现阶段电信运营商提出的“三网融合”建设的浪潮,因此可以通过OPLC构建电信公共服务平台,加速和节约我国光纤到户建设。
OPLC在设计时,主要考虑是光单元结构的选用,层绞式光缆可以包含较多芯数光纤,比较适宜配网时光缆的分歧和交接应用;蝶形光缆因施工接续时可采用快速连接器进行冷接,施工快速方便,比较适合入户应用。根据组网特性和实际使用芯数状况,我们选取中心管式光缆、层绞式光缆和蝶形光缆三种结构作为OPLC的光单元,且光单元由非金属全介质材料组成,如图9所示。
图9 OPLC典型光单元结构示意图
层绞式光单元和中心束管式光单元根据不同的敷设形式,又分为干式和油膏填充式。干式光单元可以满足大芯数垂直敷设的需要,特别是在高层楼垂直布线中应用较多,可以解决垂直敷设时油膏滴流问题,为OPLC在不同场合的应用提供了方便。考虑紧套光纤结构对温度敏感性较大,一般不建议在OPLC中应用。OPLC结构如图10所示,分为入户用和配网用两大类。
图10 OPLC结构图
OPLC在产品开发之初主要讨论的问题是电力导线在长期工作过程中产生的热量对光纤的影响。亨通集团在产品开发之初,同上海电缆研究所合作对OPLC进行耐压认证性测试,也就是认证电力导体温度在75~80℃时(超出GB 50217-2007《电力工程电缆设计规范》中规定聚氯乙烯绝缘电力电缆导体最高持续工作温度70℃),监控绝缘芯线间温度(也就是光单元外表温度),具体如图11所示,经过18天不间断测试,在导体温度不超过80℃时,绝缘芯线间温度小于70℃,考虑光单元外护套对光纤的隔热保护作用,光纤正常工作温度不超过70℃,完全满足光纤长期使用条件,并且整个试验过程中,光纤衰减变化符合相关标准要求。
图11 OPLC耐热试验
OPLC存在的问题:电力电缆运行时,短路时(持续5 秒)导体最高温度聚氯乙烯绝缘160℃,交联聚乙烯绝缘250℃;此时的瞬时温升对光单元中的光纤衰减影响程度,还需要进一步的研究,在缺乏实验数据时,建议通过短路保护器进行线缆保护。但从目前的运行经验看,在正常运行的工作状态下,OPLC的使用未发现任何问题。我公司已在上海浦东峨山路越富豪庭智能小区、浙江省海盐的智能试点小区、无锡市金科观天下智能小区和上海浦东的张江名邸等智能用电小区试点项目中运用了300多公里的OPLC电缆,运行情况良好。
结束语
随着农村和城市现代化建设的发展,FTTx建设、3G网络建设、建筑的智能化,特别是公用建筑的智能系统变得越来越普遍。对传统光缆和电力系统提出了新的要求,越来越多的电力光缆将会被期待甚至开发应用,如我公司目前正着手开发的适用于额定电压3.6/6~26/35kV的光纤复合中压电缆和适用于额定电压10kV及以下架空线路的光纤复合架空绝缘电缆等,但是目前还缺乏统一的规范进行定义,本文也就不具体叙述。相信这些产品的开发,对丰富我国中压系统建设、电力资源的合理化应用和多网融合具有积极的意义。