1 简介
生物质高温" title="高温">高温空气气化技术是燃料利用和能源供应领域内的一项高新技术,对提高资源利用率、缓解能源危机和改善环境质量具有重要意义。生物质高温空气气化系统主要由高温空气预热器、卵石床气化器、余热锅炉、气体湿式净化装置、汽轮机等动力供应装置及空气压缩机等辅助装置组成。高温低氧弥散燃烧为核心技术的高温空气发生器" title="空气发生器">空气发生器是生物质高温空气气化技术研究实验研究系统的关键部件之一,其主要功能是产生温度为800-1500℃的空气。四通阀的周期切换是高温空气发生器正常工作的关键,本文介绍采用可编程序控制器(HLC)实现四通阀周期切换的控制方案。
2 高温空气发生器的组成及工作原理
高温空气发生器是获得高温空气的关键设备,其关键技术在于采用了一对蜂窝陶瓷蓄热体,该蓄热体具有比表面积大、传热性能好、阻力小、能实现极限余热回收等特点,是一种紧凑的高效换热器。高温空气发生器主要由燃烧室、燃烧器、蓄热室、四通阀、鼓风机及排烟机组成,其中燃烧室、燃烧器、蓄热室各两个,呈左右对称布置。高温空气发生器工作原理如图1所示。
高温空气发生器工作时,燃料在A侧燃烧室内燃烧,产生1300℃左右的高温烟气,高温烟气通过蓄热室时,与蜂窝陶瓷蓄热体进行热交换,蓄热体被加热,烟气则冷却到120℃左右经四通阀排人大气中;与此同时,常温空气经四通阀后进入B侧的蓄热室,吸收蓄热室内高温蓄热体中的热量,迅速升温到1000℃以上,加热后的高温空气分成两部分,其中大部分输入到卵石床气化器中作气化剂,另一部分用于A侧燃烧室燃气的燃烧。经过一段时间后进行切换,B侧燃烧,A侧产生高温空气,切换周期为15~30s。通过这种交替运行方式,实现极限余热回收和燃烧空气的高温预热。
3 控制方案
四通阀的周期切换是高温空气发生器正常工作的关键,四通阀的切换采用齿轮齿条摆动气缸驱动,由压缩空气推动气缸产生旋转力矩,使四通阀在 1-1,2-2位置之间进行切换,压缩空气则由电磁阀S1进行控制;A,B两侧烧嘴燃气和空气由电磁阀S2-S5进行控制,其控制系统如图1所示。
3.1 控制要求
根据工艺要求,四通阀切换的同时,要求A,B两侧的烧嘴燃气和空气同步切换,当系统启动时,四通阀在1-1位置时,A侧燃烧,B侧产生高温空气;为了保证高温空气清洁,尽可以能减少空气中含烟量,燃气阀应先关闭,四通阀切换的同时另一侧点火燃烧;因此,设计燃料阀供气时间为28s,四通阀的切换时间为 30s。A侧烧嘴28s后关闭,2s后四通阀切换到2-2位置,B侧开始燃烧,A侧产生高温空气;B侧烧嘴28s后关闭,2s后四通阀切换到1-1位置,A侧开始燃烧,并重复上述过程,四通阀和燃料阀切换工作时序如图2所示。
1 简介
生物质高温空气气化技术是燃料利用和能源供应领域内的一项高新技术,对提高资源利用率、缓解能源危机和改善环境质量具有重要意义。生物质高温空气气化系统主要由高温空气预热器、卵石床气化器、余热锅炉、气体湿式净化装置、汽轮机等动力供应装置及空气压缩机等辅助装置组成。高温低氧弥散燃烧为核心技术的高温空气发生器是生物质高温空气气化技术研究实验研究系统的关键部件之一,其主要功能是产生温度为800-1500℃的空气。四通阀的周期切换是高温空气发生器正常工作的关键,本文介绍采用可编程序控制器(HLC)实现四通阀周期切换的控制方案。
2 高温空气发生器的组成及工作原理
高温空气发生器是获得高温空气的关键设备,其关键技术在于采用了一对蜂窝陶瓷蓄热体,该蓄热体具有比表面积大、传热性能好、阻力小、能实现极限余热回收等特点,是一种紧凑的高效换热器。高温空气发生器主要由燃烧室、燃烧器、蓄热室、四通阀、鼓风机及排烟机组成,其中燃烧室、燃烧器、蓄热室各两个,呈左右对称布置。高温空气发生器工作原理如图1所示。
高温空气发生器工作时,燃料在A侧燃烧室内燃烧,产生1300℃左右的高温烟气,高温烟气通过蓄热室时,与蜂窝陶瓷蓄热体进行热交换,蓄热体被加热,烟气则冷却到120℃左右经四通阀排人大气中;与此同时,常温空气经四通阀后进入B侧的蓄热室,吸收蓄热室内高温蓄热体中的热量,迅速升温到1000℃以上,加热后的高温空气分成两部分,其中大部分输入到卵石床气化器中作气化剂,另一部分用于A侧燃烧室燃气的燃烧。经过一段时间后进行切换,B侧燃烧,A侧产生高温空气,切换周期为15~30s。通过这种交替运行方式,实现极限余热回收和燃烧空气的高温预热。
3 控制方案
四通阀的周期切换是高温空气发生器正常工作的关键,四通阀的切换采用齿轮齿条摆动气缸驱动,由压缩空气推动气缸产生旋转力矩,使四通阀在 1-1,2-2位置之间进行切换,压缩空气则由电磁阀S1进行控制;A,B两侧烧嘴燃气和空气由电磁阀S2-S5进行控制,其控制系统如图1所示。
3.1 控制要求
根据工艺要求,四通阀切换的同时,要求A,B两侧的烧嘴燃气和空气同步切换,当系统启动时,四通阀在1-1位置时,A侧燃烧,B侧产生高温空气;为了保证高温空气清洁,尽可以能减少空气中含烟量,燃气阀应先关闭,四通阀切换的同时另一侧点火燃烧;因此,设计燃料阀供气时间为28s,四通阀的切换时间为 30s。A侧烧嘴28s后关闭,2s后四通阀切换到2-2位置,B侧开始燃烧,A侧产生高温空气;B侧烧嘴28s后关闭,2s后四通阀切换到1-1位置,A侧开始燃烧,并重复上述过程,四通阀和燃料阀切换工作时序如图2所示。
3.2PLC" title="PLC">PLC的选择
由于四通阀的切换控制是一个小型的逻辑控制系统,没有特殊的要求,因此选用一般小型PLC就可满足控制要求,其控制接线如图3所示。根据控制功能要求和I/0端子编号编制的四通阀切换控制梯形图如图4所示。
3.3 工作过程
当起动开关合上时,X400接点接通,Y430线圈得电,电磁阀S1打开,四通阀切换至1-1位置;Y431线圈得电,电磁阀S2,S4打开,高温空气发生器A侧点火燃烧。与此同时,Y431常开触点闭合,T552开始计时,28s后T552常闭触点打开,Y431线圈失电,电磁阀S2,S4关闭,A 侧停止燃烧。30s后,T551的常闭触点打开,T550常闭触点打开,线圈Y430失电,电磁阀S1关闭,四通阀切换至2-2位置;Y430常开触点闭合,Y432线圈接通,电磁阀S3,S5打开,B侧点火燃烧;同时Y432常开触点闭合,巧52开始计时,28s后T552常闭触点打开,Y432线圈失电,电磁阀S3,S5关闭,B侧停止燃烧。30s后完成一个循环过程,并周而复始地重复上述过程。其控制命令程序如表1所示。
如果发生A、B两侧同时点火,这时Y433线团接通,产生报警,作紧急处理。
4 结论
该实验系统已进行了冷态实验,运行结果表明,四通阀和燃料阀的切换控制能按工艺要求进行,系统运行正常。随着研究工作的进一步深入,对高温空气发生器检测、控制的研究将更加深入和完善,并最终实现高温空气发生器的计算机控制。