

Introduction to BLDC Motor Control Using Freescale MCU

Tom Wang Segment Biz. Dev. Manager Avnet Electronics Marketing Asia

Agenda

- Introduction to Brushless DC Motors
- Motor Electrical and Mechanical Model
- Motor Speed Control Hardware Design
- Motor Speed Control Software Tasks
- Motor Speed Control Challenges

Agenda

- Introduction to Brushless DC Motors
- Motor Electrical and Mechanical Model
- Motor Speed Control Hardware Design
- Motor Speed Control Software Tasks
- Motor Speed Control Challenges

Theory of Operation

Structure of a single-phase 2 pole-pair BLDC motor

- Based on attraction and repulsion of magnetic poles.
- Rotating magnetic field of stator rotates rotor
- Rotation of magnetic field must be in phase with rotation of rotor.
- Rotation of magnetic field is achieved by changing direction of current through the stator coil.
- Speed Control achieved by controlling the average current flowing into stator coil.
- Hall Sensor used to detect rotor position.

Theory of Operation

Operation of a single-phase 1 pole-pair BLDC motor

Agenda

Introduction to Brushless DC Motors
 Motor Electrical and Mechanical Model
 Motor Speed Control Hardware Design
 Motor Speed Control Software Tasks
 Motor Speed Control Challenges

Motor Mechanical Model

- w Mechanical model:
- \clubsuit Mechanical Drive Torque generated T is expressed as follows:

- $T = K_T . i.sin(N. \theta + C) = J.d\omega/dt + L.\omega + T_{ext}$

- 🔷 where:
 - K_T = torque constant
 - *i* = current through coil
 - N = Number of pole pairs
 - θ = phase angle of rotor
 - C = phase offset due to motor phases
 - J = moment of inertia of rotor
 - ω = angular speed of rotor = $d\theta/dt$
 - L = constant associated with speed-related losses (damping, eddy current, friction)
 - T_{ext} = other external mechanical load

Motor Electrical Model

Electrical model:

 $\langle V_s = L_m.di/dt + i.R_m + K_T. \omega$

🖤 where:

 $\sim V_s$ = supply voltage

- $\sim L_m = motor coil inductance$
- $R_m = motor coil resistance$
- $\sim \omega$ = rotor speed

 $\mathbf{V}_{T} \cdot \boldsymbol{\omega} = \mathsf{back-emf} \text{ induced voltage}$

Agenda

- Introduction to Brushless DC Motors
- Motor Electrical and Mechanical Model
- Motor Speed Control Hardware Design
- Motor Speed Control Software Tasks
- Motor Speed Control Challenges

Motor Speed Control Hardware Block Diagram

Agenda

- Introduction to Brushless DC Motors
- Motor Electrical and Mechanical Model
- Motor Speed Control Hardware Design
- Motor Speed Control Software Tasks
- Motor Speed Control Challenges

MC9S08SH4 Task and Resource Scheduling

Accelerating Your Success[™]

Agenda

- Introduction to Brushless DC Motors
- Motor Electrical and Mechanical Model
- Motor Speed Control Hardware Design
- Motor Speed Control Software Tasks
- Motor Speed Control Challenges

Motor Speed Control Challenges

- Phase commutation efficiency
- Reduce in-rush current
- 🔷 Over-current limit
- Speed Control Accuracy
- Tuning motor speed curve

Motor Speed Control Challenges

- Phase commutation efficiency
- Reduce in-rush current
- Over-current limit
- Speed Control Accuracy
- Tuning motor speed curve

H-Bridge (Driving Sequence)

H-Bridge (Efficient Driving Sequence)

Motor Speed Control Challenges

- Phase commutation efficiency
- Reduce in-rush current
- 🔷 Over-current limit
- Speed Control Accuracy
- Tuning motor speed curve

Reduce in-rush current

- In-rush current due to change in fan speed setpoint can cause sudden current surge
- External power supplies may trip due to current surge
- Solutions:
 - Setpoint current RPM differential limit
 - Setpoint ramping

Motor Speed Control Challenges

- Phase commutation efficiency
- Reduce in-rush current
- Over-current limit
- Speed Control Accuracy
- Tuning motor speed curve

Over-current limit

- Required for large current fans to prevent damage to electronics
- Over-current is caused by physical obstruction of rotor movement
- Can be implemented using current measurement resistor and fast ADC peripheral – available in MC9S08SH4

Motor Speed Control Challenges

- Phase commutation efficiency
- Reduce in-rush current
- Nover-current limit
- Speed Control Accuracy
- Tuning motor speed curve

Speed Control Accuracy

- PID speed control steady state error
- Output speed measurement accuracy
- Input PWM duty cycle measurement accuracy

Speed Control Accuracy

PID speed control steady state error

- Output speed measurement accuracy
- Input PWM duty cycle measurement accuracy

PI Closed-Loop Speed Control Model

PI Motor Speed Control

PI Closed-Loop Speed Control

- Velocity form of PI, also called "incremental" or "differential" PI is used to control motor speed.
- Derived by differentiation of the standard form.
- The velocity form of PI:
- $\sim G'(s) = K_p * s + K_i$

PI Closed-Loop Speed Control Model (Velocity form)

PI Motor Speed Control (Velocity form)

Accelerating Your Success[™]

PI Speed Control Steady State Error

- Steady state error occurs when non-zero e results in zero u output
- Caused by implementation of PI Control loop in integer arithmetic:

 $- Ki^*e < 1 = 0$

&=> e < 1/Ki

Maximum steady state error = 1/Ki

Speed Control Accuracy

PID speed control steady state error

- Output speed measurement accuracy
- Input PWM duty cycle measurement accuracy

Output speed measurement accuracy

- Output speed measurement accuracy depends on MCU clock accuracy
- Crystal can be used to provide accurate clock but this is expensive solution
- MC9S08SH4 can run on internal oscillator.
 - Factory-trimmed with typical accuracy of 1% over voltage and temperature range

Speed Control Accuracy

PID speed control steady state error

- Output speed measurement accuracy
- Input PWM duty cycle measurement accuracy

"Standard" Method of measuring PWM duty cycle

Step 1: Low pass filter to convert PWM to analog voltage where analog voltage level is proportional to the PWM duty cycle

Step 2: MCU measures analog voltage level using internal ADC

Step 3: MCU derives duty cycle by dividing measured ADC value by maximum ADC value.

Problems with ADC method:

- Accuracy is affected by ground noise when motor is running – especially bad for high-current motor
- Low pass filter circuit subject to component value variation (e.g. 1% resistors) and temperature variations.
- ADC performance limitations (output resistance limits of low pass filter circuit, non-linearity errors, zero-scale errors, fullscale errors, quantization errors)

Conclusion:

It is odd to measure a digital signal by conversion to analog signal to derive its digital value!

Random Sampling Method of measuring PWM duty cycle

Step 1: Level translation circuit to convert PWM signal voltage level to MCU logic voltage level

Step 2: MCU samples PWM signal at its GPIO pin at random intervals to derive PWM duty cycle

Duty cycle = (Total number of '1' samples) \div (Total number of samples)

Mathematics behind random sampling:

- One reading of GPIO will yield either logic '1' or '0'
- Therefore, one sample of PWM signal is a Bernoulli trial; where the probability of reading logic '1' is:

P(reading a logic '1') = duty cycle of PWM signal

For multiple independent samples, this becomes a binomial distribution

Accelerating Your Success[™]

According to Binomial Distribution:

 \sim The proportion of samples with logic '1' = np/n = p

 \sim The standard deviation is $(p(1-p)/n)^{\frac{1}{2}}$

- When n is large, Central Limit Theorem states that the binomial distribution can be approximated by a Normal distribution
- The standard normal distribution, the relationship between actual mean (p), observed mean (X), standard deviation (σ) and Z, the standard normal distributed variable is:

$$\Rightarrow$$
 p = X ± Z σ ≈ X ± Z.(X.(1-X)/n)^{1/2}

Hence, the probability that p is outside of above range is defined by the Z, the standard normal distributed variable:

$$▲$$
 1 − P((X − Z σ) < p < (X + Z σ)) = 1 − P(-Z < z < Z)

Speed Control Accuracy - Conclusion

Error contributions between Input PWM and Output Speed (RPM):

Input PWM duty cycle measurement error

- Output speed measurement error
 - E.g MCU datasheet indicates MCU clock error less than 1% this will result in up to 1% error in output speed measurement error
- PID Control Loop steady state error
 - E.g. if the Integral Gain is 0.0722, the maximum steady state error is 1/0.0722 = 13 (rounded down)

Speed Control Accuracy - Conclusion

Therefore, to achieve a certain output RPM error limit:

- Duty cycle measurement error + Output speed measurement error + PID steady state error <= Output RPM error limit</p>
- Duty cycle measurement error <= Output RPM error limit -
 Output speed measurement error PID steady state error

Speed Control Accuracy - Conclusion

We can put all these into a spreadsheet:

Parameters	Values	Description
Time to obtain single duty-cycle measurement (s)	0.5	Implementation specific - dependent on MCU
Minimum operating speed (RPM)	900	
Maximum operating (RPM)	4000	These parameters determine the fan operating curve (RPM vs.
Minimum duty cycle (%)	0%	duty cycle)
Maximum duty cycle (%)	100%	
PID Loop maximum steady state error (RPM)	17	This error is the reciprocal of the PID Integral Gain
		Obtained from MCU datasheet.
Maximum MCU clock error (%)	1.00%	MCU Clock Error will affect operating speed measurement.
Maximum allowed RPM error (RPM)	100	Specified by user/customer
		Operating Duty Cycle. Worst case error occurs at 50% duty
Duty cycle (%) [p]	50%	cycle
		This must be less than "Maximum allowed duty cycle error (%)",
Max Error @ specified duty cycle (%)	1.8000%	otherwise, background color will change to red
Number of random samples required to perform one duty cycle measurement	50000	
Computed Parameters		
Fan operating curve slope [A]	3100	Desired operating RPM – A^* n + B
Fan operating curve offset [B]	900	
Maximum allowed error due to duty cycle error @ specified Duty Cycle (RPM)	58.5	
Maximum allowed duty cycle error (%)	1.89%	
		This limit determines the confidence interval that the actual duty
Standard normal variable limit	8.049844719	cycle lies within the specified limits of the observed duty cycle.
Probability of one duty cycle measurement exceeding Max Error [Pe]	8.8817842E-16	
		"Failure" is the case when measured duty cycle deviates from
MTBF (hours)	1.5637499E+11	actual duty cycle by more than Max Error

Accelerating Your Success[™]

Motor Speed Control Challenges

- Phase commutation efficiency
- Reduce in-rush current
- Nover-current limit
- Speed Control Accuracy
- Tuning motor speed curve

Tuning Motor Speed Curve

- Must tune quickly to meet customer changing requirements
- Complex motor speed curve requirements
- Avnet's solution: Configuration by Excel spreadsheet!
 - Easy to use
 - Generates firmware automatically

Tuning Motor Speed Curve

	A	В	D	
1	Parameter	Value	Description	
2	Data revision	0000	User should change this for each new set of parameters they use	
3	Proportional gain	5000	Proportional gain of PI control. The actual value is a fraction of 2^16	
4	Integral gain	2500	Integral gain of PI control. The actual value is a fraction of 2*16	
5	Minimum input duty cycle (%)	35.00%	Minimum input duty cycle at which motor can start running	
6	Maximum input duty cycle (%)	85.00%	Maximum input duty cycle at which motor runs as maximum speed	
7	Minimum tach speed (RPM)	1400	Minimum speed at which motor should run	
8	Maximum tach speed (RPM)	4600	Maximum speed at which motor should run	
9	Lower hysteresis minimum input duty cycle (%)	11.00%	Lower hysteresis minimum limit at which motor will stop running	
10	Upper hysteresis minimum input duty cycle (%)	15.00%	Upper hysteresis minimum limit at which motor will stop running	
11	Lower hysteresis Full Speed input duty cycle (%)	87.00%	Lower hysteresis minimum limit at for full speed mode	
12	Upper hysteresis Full Speed input duty cycle (%)	89.00%	Upper hysteresis minimum limit at for full speed mode	
13	Lower hysteresis maximum input duty cycle (%)	93.00%	Lower hysteresis maximum limit at which motor will stop running	
14	Upper hysteresis maximum input duty cycle (%)	96.00%	Upper hysteresis maximum limit at which motor will stop running	
15	Locked motor restart time (seconds)	13	Delay in restarting motor after motor locked condition is detected	
16	Maximum Full Speed limit (RPM)	6500	Maximum speed limit at full speed mode	
25				

Accelerating Your Success[™]

Tuning Motor Speed Curve

N	Aicrosoft Excel -	dcfancfg																_ 7	K	
:] Eile Edit View Insert Format Iools Data Window Help								Type a question for help 🔍 🗕 🗗 🗙												
: 🗅	🞽 🖬 🔒 🖪	🛕 🖑 🚉 I	🎖 🗈 🛍 • 🛷	· · · · ·	(1 + 1)	9 1	00% 🖣		Arial		- 10	• B	I	<u>u</u> ≣			-	🗞 - <u>A</u> -	:: 7	
	1 2 2 2 5	000	2 🖳 🕡 W/R	eply with	n <u>⊂</u> hanges.	E <u>n</u> o	Review	Aa	ab	ž) 💷 [1			
	A	В	С	D		Ξ	F	(3	Н			J	K	L		M	N 🔽	-	
		Increasing	Decreasing															1	f	
1	Durte availa (9/)	duty cycle	duty cycle																	
2	Duty cycle (%)	Speed (KPM)	Speed (RPM)																	
3	1	0																		
-4	2	0			7000	0 Speed vs. Duty cycle														
6	3	0			7000															
7	4	0	Ō												777					
8	5	0	0		6000										+++					
9	6	0	0															_	-	
10	7	0	0		5000										+++					
11	8	0	0	-	-															
12	9	0	0		₹ 4000															
13	10		0	9	£								_							
14	11	U	1400		auuu							_	- C					Increasing		
15	12	U	1400		<u>-</u> 3000						-							cycle		
10	13	0	1400															Decreasinc		
18	15	1400	1400		2000					-						Charl	t Area	cycle 🔪		
19	16	1400	1400							and the second second										
20	17	1400	1400		1000															
21	18	1400	1400																	
22	19	1400	1400		C	-			-		-	- 1	-							
23	20	1400	1400			0	10	20	30	40	50	60	70	80	90	100				
24	21	1400	1400							Due	v cycle 4	1961								
25	22	1400	1400							Du	y cycle i	70								
26	23	1400	1400																	
27	24	1400	1400																	
28	25	1400	1400																	
29	26	1400	1400																	
30	27	1400	1400																Y	
14 4	। ▶ ▶ \ Paramet	ers) DC Fan Gi	aph/							<][>		
Read	dy																			