

Agilent E1968A GSM/GPRS/EGPRS Test Application

Data Sheet

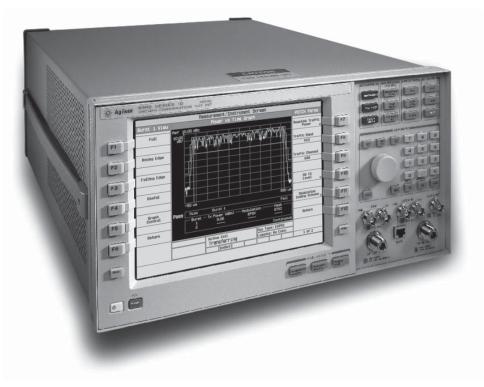
For the E5515B/C wireless communication test set and the E1987A Fast Switching Test Application.

Produce high volume quality phones at the lowest possible cost

Flexible

 The E1968A includes all essential connection types and signaling options necessary for a complete GSM/GPRS/EGPRS manufacturing test solution

Fast


- Digital ORFS up to 20x faster
- **Dynamic power** fast automatic signaling or non-signaling method for Tx output power calibration
- Phase and amplitude versus time (PAvT) – measurement for calibration of polar modulated devices

New Key Features

- Fast device calibration across level and frequency simultaneously
- Extended multislot power versus time measurement – simultaneous measurement of all bursts up to four uplink time slots
- Extended multislot transmit power measurement – simultaneous measurement of all bursts up to four uplink time slots

GSM/GPRS/EGPRS Signaling and Base Station Emulation

The E1968A GSM/GPRS/EGPRS mobile test application gives you the test solution designed especially for your GSM/GPRS/ EGPRS test requirements of transceivers and wireless terminals by delivering the speed and flexibility needed for high-volume, automated production-test environments. Since this solution is based on the highperformance E5515C (8960) test set, you will get speed and concurrent measurement capability, providing immediate benefits that translate into a competitive advantage for mobile-phone manufacturers. This significantly cuts test times, helping reduce the manufacturing cost per phone.

Audio Functionality

- Choice of speech encoded on downlink TCH: none, echo, 300 Hz sine, 1 kHz sine, 3 kHz sine, or PRBS-15, multi-tone, or custom
- GSM analog audio measurement (audio level, distortion, frequency, SINAD)

Receiver Measurements

- GSM burst-by-burst bit error ratio (fast BER)
- GSM bit error ratio (BER)
- GPRS/EGPRS multislot BER
- GPRS/EGPRS multislot block error ratio (BLER)

Transmitter Measurements

- GSM/GPRS/EGPRS multislot transmit power
- EGPRS multislot-tolerant transmit power
- 8PSK multislot-tolerant modulation accuracy (peak, rms, 95th percentile and sample EVM; frequency, magnitude and phase errors; origin offset suppression; IQ imbalance)
- GMSK multislot-tolerant frequency error
- GMSK multislot-tolerant phase error (peak and rms with confidence limits)
- Multislot power versus time (burst mask comparison with settable masks)
- Burst timing
- Multislot-tolerant output RF spectrum due to modulation and switching
- IQ tuning
- · GSM decoded audio level
- · Dynamic power
- · Phase and amplitude versus time (PAvT)

Instruments

- · Audio generator
- · General-purpose spectrum monitor
- GSM multi-tone audio

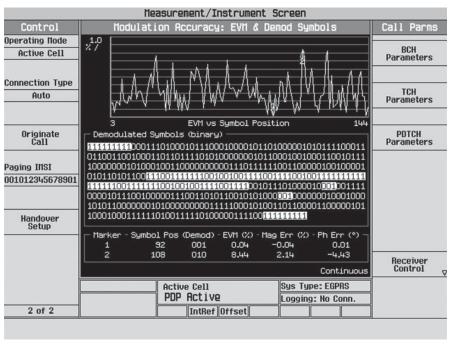


Figure 1. Use graphical measurement results to troubleshoot your EGPRS wireless device.

Integrated GSM, GPRS, and EGPRS Functionality

- Switch between GSM, GPRS, and EGPRS serving cells
- Switch between data and voice connections without losing camp or attach
- Establish a voice or data connection after initial GPRS attach

GSM Functionality

Mobile station power output level control: meets GSM phase one and phase two power control levels

Traffic channels:

TCH/FS - FR, EFR, and HR speech modes

Broadcast channel configuration: BCCH + CCCH + SDCCH/4

Signaling protocol setup:

FACCH audio speech echo with one-second fixed delav

GPRS Functionality

Multislot classes supported: 1 through 12

Control channels:

BCH on timeslot 0 on any ARFCN in any band

Broadcast channel configuration:

FCCH + SCH + BCCH + CCCH + SDCCH/4 (0-3) + SACCH/C4 (0-3)

Downlink PDTCH:

one, two, three, or four on the same PDTCH ARFCN with one or two PDTCH amplitudes settable between 0 and 55 dB below BCH amplitude; amplitudes in adjacent timeslots selectable as off, PRL (power reduction level) one, or PRL two

EGPRS Functionality

Multislot classes supported:

1 through 6 for all operating modes, 7 through 12 for EGPRS BCH+PDTCH operating modes and other operating modes in some configurations

Control channels:

BCH on timeslot 0 on any ARFCN in any band

Broadcast channel configuration: FCCH + SCH + BCCH + CCCH + SDCCH/4 (0-3) + SACCH/C4 (0-3)

Downlink PDTCH:

one, two, three, or four on the same PDTCH ARFCN with one or two PDTCH amplitudes settable between 0 and 55 dB below BCH amplitude; amplitudes in adjacent timeslots selectable as off, PRL one, or PRL two

Call Processing Functionality

- GSM 450 MHz, GSM 480 MHz, GSM 750 MHz, GSM 850 MHz, T-GSM 810 MHz, PGSM 900 MHz, EGSM 900 MHz, RGSM 900 MHz, DCS 1800 MHz, PCS 1900 MHz bands
- GSM MS and BS origination
- GSM MS and BS release
- · GPRS mobile-initiated attach and detach
- GPRS and EGPRS packet data transfers on uplink and downlink
- Intra-cell channel assignments
- · Inter-cell handovers between all bands
- Handover from W-CDMA to GSM (with E1987A test application)
- · BA table with 16 settable neighbor cells
- External triggers provide a signal output each frame with settable timeslot, bit, and option to include or exclude the idle frame

BCH setup and parameters

- Settable downlink power, band, and channel number
- Settable maximum control channel power used by the MS for access bursts of 0 to 31
- Settable maximum control channel power offset value for DCS 1800 MHz band of 0 to 3
- · Band indication of DCS or PCS

GSM TCH parameters

- Settable downlink TCH power including power in unused bursts, uplink band, channel number, and power level
- Channel modes of FR, EFR, and HR, plus HR subchannel of 0 or 1
- Settable uplink timeslot of 1 to 7
- Settable timing advance of 0 to 63
- Mobile loopback of off, type A, type B, or type C as defined in ETSI 04.14 or 3GPP 44.014
- Downlink TCH speech types of none, echo, 300 Hz sine, 1 kHz sine, 3 kHz sine, or PRBS-15, multi-tone or custom

GPRS and EGPRS PDTCH parameters

- Settable downlink PDTCH power including power in unused bursts, uplink band, channel number, and power level
- GPRS coding schemes of CS-1, CS-2, CS-3, or CS-4
- EGPRS uplink modulation coding schemes of MCS-1, MCS-2, MCS-3, MCS-4, MCS-5, MCS-6, MCS-7, MCS-8, or MCS-9
- EGPRS downlink modulation coding schemes: same as uplink, MCS-1, MCS-2, MCS-3, MCS-4, MCS-5, MCS-6, MCS-7, MCS-8, or MCS-9
- EGPRS modulation coding scheme of 8PSK clear coded in EGPRS BCH+PDTCH operating mode
- (E)GPRS multislot configurations of 1x1, 1x2, 1x3, 1x4, 2x1, 2x2, 2x3, 3x1, 3x2, 4x1 (downlink x uplink)
- Selection of which contiguous downlink bursts to loop back on the uplink with connection type ETSI type B or SRB loopback
- Selection of which uplink burst to use for multislot-tolerant RF measurements

Cell parameters

- Three-digit MNC off or on in PCS 1900 MHz and GSM 850 MHz bands
- Settable MCC, MNC, LAC, RAC, NCC, and BCC
- Option to get IMEI at call setup
- Mobile DTX on or off
- · Paging mode reorganized or normal
- Settable paging multiframes of 2 to 9
- Repeat paging on or off
- Tx level FACCH signaling on or off
- Symmetric or asymmetric uplink frame segmentation

Handover setup

- GSM traffic band, traffic channel, timeslot, channel mode, half-rate speech subchannel, MS Tx level
- GPRS traffic band, traffic channel, coding scheme, multislot configuration, P0, MS Tx level burst 1, MS Tx level burst 2
- EGPRS traffic band, traffic channel, downlink modulation coding scheme, uplink modulation coding scheme, multislot configuration, P0, MS Tx level burst 1, MS Tx level burst 2

Protocol control

- RLC/MAC header off or on in GPRS BCH+PDTCH operating mode
- RLC/MAC header selectable as uplink or downlink in EGPRS BCH+PDTCH operating mode
- RLC/MAC packet timeslot reconfigure
 off or on
- RLC/MAC packet power timing advance on or off
- Settable RLC/MAC block poll rate of 1 to 256
- RLC/MAC frame start position of relative, absolute or immediate
- LLC BLER FCS of valid or corrupt
- Settable LLC payload patterns for connection types ETSI type B or for BLER with corrupt FCS of all zeros, all ones, alternate bits, alternate pairs, alternate quads, PRBS-15, fixed 2B (hex), custom, GMM information for BLER

Receiver control

- Expected power control auto or manual
- manual power of bursts 1 and 2 settable in dBm
- Measurement frequency auto or settable in MHz
- Modulation format control auto or manual
- Manual modulation of bursts 1 and 2 selectable as GMSK or 8PSK

DUT information

- International mobile subscriber identity (IMSI)
- International mobile equipment identity (IMEI) (if selected)
- GPRS multislot class
- · EGPRS multislot class
- GMSK power class
- 8PSK power class

Counters reported

- · RACH count
- · Corrupt burst count
- Page count
- Decode error count
- Missing burst count

Errors reported

- · Burst timing error
- BLER (block error rate)

Last location information reported

- Location area code (LAC)
- Mobile country code (MCC)
- Mobile network code (MNC)

SACCH reports (on a GSM voice call)

- Timing advance
- Tx level
- Rx level
- Rx qual

Neighbor cell reports

- Channel number
- · Base station color code (BCC)
- Rx level
- Network color code (NCC)

Operating Modes

Active cell GSM, GPRS, or EGPRS:

A BCH is generated on the downlink. Attach and detach procedures, voice and packet data transfers on the uplink(s), and downlink(s) can be executed. TCH and PDTCH band and channel, GSM timeslot, GSM channel mode, GPRS and EGPRS multislot configurations, GPRS coding scheme, EGPRS uplink and downlink modulation coding schemes, and downlink and uplink power level(s) can be changed. All transmitter measurements can be made. GSM, GPRS, or EGPRS is used as the serving cell.

Six connection types are available in the active cell operating modes as follows

- (E)GPRS connection type ETSI type A: test mode A as defined in ETSI 04.14 or 3GPP 44.014; the downlink is terminated once the uplink has been established
- (E)GPRS connection type ETSI type B (unack): test mode B as defined in ETSI 04.14 or 3GPP 44.014 with MS in RLC acknowledged mode; downlink PDTCH(s) data is generated and the mobile loops back the downlink data on the uplink(s); BER and BLER measurements can be made
- (E)GPRS connection type ETSI type B (ack): test mode B as defined in ETSI 04.14 or 3GPP 44.014 with MS in RLC acknowledged mode; downlink PDTCH(s) data is generated and the mobile loops back the downlink data on the uplink(s); BER and BLER measurements can be made
- (E)GPRS connection type BLER: Agilent-proprietary data connection with the primary purpose of calculating BLER

- Connection type auto: a GSM voice call or GPRS or EGPRS data connection can be initiated by the mobile; the test set can initiate a GSM voice call; if a voice call is in progress, data transfer requests are ignored; network-initiated GSM voice call while a GPRS or EGPRS data transfer is in progress causes the data connection to be terminated
- EGPRS connection type SRB loopback: an EGPRS Layer 1 loopback mode for testing BER as defined in ETSI 04.14 or 3GPP 44.014

Cell off:

All signaling and RF power output is discontinued; this mode is used mainly for adjusting cell parameters that cannot be changed when a live cell is operating

The following seven operating modes use limited signaling for call setup. Protocol is used only to maintain a link established by the mobile station. Over-the-air signaling and capability to demodulate and decode uplink random access channel (RACH) bursts are not available.

- GSM BCH: a broadcast channel (BCH) without a traffic channel (TCH) is generated on the downlink and mobile station level information is carried on the broadcast control channel (BCCH)
- GSM BCH+TCH: a BCH and TCH are generated on the downlink; mobile station level information is carried on the BCCH and the downlink slow associated control channel (SACCH); timing advance changes are sent on the downlink SACCH; a call can be established by manually synchronizing the mobile station with the TCH and turning on the mobile station's TCH at the same absolute radio frequency channel number (ARFCN) and timeslot as the test set's TCH; during a call, demodulation and channel decoding of the uplink are available, although no messages are decoded

- **GPRS BCH**: a BCH is generated on the downlink, but no uplink demodulation occurs
- GPRS BCH+PDTCH(s): a BCH and PDTCH(s) are generated on the downlink and the downlink multislot configuration can be changed; a forced call can be established if the mobile is manually synchronized to the test set's downlink and the mobile's uplink PDTCH(s) uses the same ARFCN and timeslot(s) as the downlink; when a forced call is established, BER and BLER measurements can be made and demodulation and channel decoding of the uplink are available, although no messages are decoded
- EGPRS BCH: a BCH is generated on the downlink, but no uplink demodulation occurs
- EGPRS BCH+PDTCH(s): a BCH and PDTCH(s) are generated on the downlink and the downlink multislot configuration can be changed; a forced call can be established if the mobile is manually synchronized to the test set's downlink and the mobile's uplink PDTCH(s) uses the same ARFCN and timeslot(s) as the downlink; when a forced call is established, BER and BLER measurements can be made and demodulation and channel decoding of the uplink are available, although no messages are decoded
- **CW**: an unmodulated continuous wave (CW) signal is generated on the downlink; the level and frequency of the CW signal can be changed; no uplink demodulation or channel decoding is available

Technical Specifications

These specifications apply to an E5515C mainframe with Option 002 when used with the E1968A test application of firmware revision A.08 or higher, or the E1987A test application of firmware revision A.06 or higher. Depending on the exact configuration, earlier E5515C and E5515B instruments may require hardware upgrades to obtain certain features and capability. Features which may require hardware upgrades include: EGPRS (all capability), higher EGPRS multislot classes, spectrum monitor, RF out only port, phase and amplitude versus time (PAvT), and ORFS digital filter option.

CAUTION: Loading an application onto your E5515 test set that is not compatible with your E5515's hardware revision can cause your E5515 to lock-up. For information on application/E5515 compatibility go to http://www.agilent.com/find/E5515 and select the relevant link to either E5515B Release Notes or E5515C Release Notes. Always refer to this information before loading an application.

Supplemental characteristics are intended to provide additional information useful in applying the instrument by giving typical, but non-warranted performance parameters. These characteristics are shown in italics and labeled as *"typical,"* or *"supplemental,"* and apply at +25 °C.

RF (downlink) generator specifications

RF generator specifications apply to both RF generators in the 8960.

RF frequency

Frequency ranges: 450 to 496 MHz, 700 to 800 MHz, 810 to 960 MHz, 1.7 to 1.99 GHz

Accuracy and stability: same as timebase reference

Supplemental characteristics

Typical CW frequency switching speed: < 10 ms to be within < 0.1 ppm of final frequency

Operating frequency range: 292 to 2700 MHz

Setting resolution: 1 Hz

RF amplitude

Output level range at RF IN/OUT: -110 to -13 dBm

Output level range at RF OUT ONLY: -110 to -5 dBm

RF generator level accuracy is derived from 95th percentile observations with 95 percent confidence (corresponds to an expanded uncertainty with a 95 percent confidence (k=2)) at ambient conditions, then qualified to include the environmental effects of temperature and humidity.

Absolute output level accuracy: $< \pm 1.0 \text{ dB}$

VSWR at RF IN/OUT:

< 1.14:1 for 450 to 496 MHz and 810 to 960 MHz, < 1.2:1 for 1.7 to 1.99 GHz

Reverse power at RF IN/OUT:

< 2.5 W continuous, < 5 W peak bursted power

Reverse power at RF OUT ONLY:

< 500 mW continuous

Supplemental characteristics

Typical output level accuracy: < ±0.5 dB

Typical output level repeatability at RF IN/OUT (returning to the same frequency and level): < ±0.1 dB

Typical VSWR at RF OUT ONLY: < 1.4:1 for 450 to 496 MHz and 810 to 960 MHz, < 1.45:1 for 1.7 to 1.99 GHz

Typical isolation from RF OUT ONLY port to **RF IN/OUT port (when the RF generator is routed to the RF OUT ONLY port)**: > 60 dB for 450 to 496 MHz and 810 to 960 MHz, > 40 dB for 1.7 to 1.99 GHz

Operating level range at RF IN/OUT: -127 to -10 dBm

Operating level range at RF OUT ONLY: -119 to -2 dBm

Output level setting resolution: 0.1 dB

GMSK signal generation

Absolute output level accuracy with GMSK modulation on:

Specification	Ranges
< ±1.10 dB	Single slot from
	–110 to –13 dBm
< ±1.10 dB	1 multislot level between
	–110 and –13 dBm
< ±1.50 dB	2 multislot levels
	≤ 20 dB apart between
	–110 and –70 dBm

Peak phase error:

 $< \pm 4$ degrees

rms phase error:

< 1 degree

Frequency error:

 $< \pm 0.01$ ppm plus timebase reference

Amplitude flatness:

 $< \pm 0.3$ dB for single-slot GMSK signals, $< \pm 1.0$ dB for multislot GMSK signals

Supplemental characteristics

Typical absolute output level accuracy with GMSK modulation on:

Specification	Ranges
< ±0.55 dB	Single slot from
	–110 to –13 dBm
< ±0.55 dB	1 multislot level between
	—110 and —13 dBm
< ±0.85 dB	2 multislot levels
	≤ 20 dB apart between
	—110 and —70 dBm

Typical burst modulation on/off ratio (referenced to lowest signal level): > 50 dB

8PSK signal generation

Absolute output level accuracy with 8PSK modulation on:

Specification	Ranges
< ±1.10 dB	Single slot from
	–110 to –13 dBm
< ±1.10 dB	1 multislot level between
	–110 and –13 dBm
< ±1.50 dB	2 multislot levels
	≤ 20 dB apart between
	–110 and –70 dBm

rms EVM:

< 4%

Origin offset suppression: > 35 dB

s oo nd

Frequency error:

 $< \pm 0.02$ ppm plus timebase reference

Supplemental characteristics

Typical absolute output level accuracy with 8PSK modulation on:

Specification	Ranges
< ±0.57 dB	Single slot from
	–110 to –13 dBm
< ±0.57 dB	1 multislot level between
	—110 and —13 dBm
< ±0.85 dB	2 multislot levels
	≤ 20 dB apart between
	—110 and —70 dBm

Spectral purity

Harmonics:

 \leq -25 dBc for levels \leq -17 dBm

Subharmonics:

≤ –40 dBc

Non-harmonics:

<-55 dBc for 100 to \leq 1500 kHz offsets from carrier, <-68 dBc for > 1500 kHz offsets from carrier

Supplemental characteristics

Typical non-harmonic performance:

< -55 dBc for 3 to < 100 kHz offsets, < -53 dBc for line-related non-harmonics

Typical spurious due to receiver LO leakage:

< -50 dBm for spurious at 105 ± 2.5 MHz below expected transmitter frequency and its second harmonic

RF analyzer functionality

RF frequency

Ranges applied to demodulation and transmitter specifications: 450 to 496 MHz, 700 to 800 MHz, 810 to 960 MHz, and 1.7 to 1.99 GHz

Supplemental characteristics

Operating range: 292.5 to 2700 MHz

Transmitter and receiver measurement specifications

The time until a measurement times-out and returns control to the user can be set independently for each measurement. All measurements return a measurement integrity result indicating the accuracy and usefulness of each measurement's results.

EGPRS 8PSK measurements are GMSKtolerant. Any GMSK bursts are detected and discarded. Measurements continue when the next 8PSK burst is detected. EGPRS GMSK measurements are also 8PSK-tolerant.

Frequency coverage and amplitude range

Unless otherwise noted, all specifications apply to frequencies of 450 to 496 MHz, 700 to 960 MHz, and 1.7 to 1.99 GHz, signals with peak input power at the test set's RF IN/OUT not higher than +37 dBm, and temperatures of 0 to +55 °C. Input signal transmit power (defined as the average power over the useful part of the burst) at the test set's RF IN/OUT must be within ± 3 dB of the test set's expected power for warranted performance.

Receiver measurement specifications

Simultaneous demodulation and measurements

The test set's RF analyzer provides dedicated signal paths for demodulation (maintaining the link) and measurements to be performed simultaneously.

Demodulation frequency capture range:

signal must be within ±100 kHz of test set's expected frequency for warranted performance

Single-slot demodulation sensitivity: ≥ -30 dBm for BER and BLER measurements

Multislot demodulation sensitivity: all uplink timeslots ≥ -30 dBm for maintaining a data link when

- adjacent GMSK timeslots from GPRS signals are ≤ 25 dB different in level,
- adjacent GMSK timeslots from EGPRS signals are ≤ 20 dB different in level, or
- adjacent 8PSK timeslots are ≤ 10 dB different in level

Supplemental characteristics

Typical demodulation sensitivity:

 \geq -40 dBm for maintaining a link

GSM BER measurement

Types of signals measured:

compares 260 bits of speech data using mobile phone loopback with or without signaling of erased speech frames

Minimum input level:

uplink signals at test set's RF IN/OUT must have transmit power $\geq -30~dBm$ for warranted performance

Residual BER: $< 10^{-6}$

Mobile loopback:

in active cell operating modes as type A or type B must be selected

Measurement type:

selectable as residual type Ia, residual type Ib, residual type II, type Ia, type Ib, or type II

Signaling loopback control: selectable as on or off

Data patterns:

selectable in GSM BCH+TCH operating mode as all zeros, all ones, alternate bits, alternate pairs, alternate quads, PRBS-15, fixed 2B (hex), multi-tone, or custom

Closed-loop signaling delay: settable between 0 and 5 s

Speech frames delay: settable between 1 and 15 frames or automatically determined

Measurement unit:

selectable as percent or count

Numerical results:

BER, number of bits tested, number of bad bits, frame erasure (FER) for residual measurement types, cyclic redundancy check (CRC) for non-residual measurement types, speech frame delay, Rx level, Rx qual

Multi-measurement capabilities: 1 to 999,000 bits

Concurrency capabilities:

GSM BER measurements cannot be made concurrently with GSM FBER measurements, GSM decoded audio level measurements, or while speech is provided on the downlink TCH; GSM BER measurements can be made concurrently with all other measurements

Supplemental characteristics

Measurement resolution: 0.01 percent

GSM fast bit error ratio (FBER) measurement

Types of signals measured:

comparison of 114 bits of interleaved data with mobile phone in burst-by-burst loopback

Minimum input level:

uplink signal at test set's RF IN/OUT must have transmit power \geq -30 dBm for warranted performance

Residual BER: < 10⁻⁶

Measurement data pattern: PRBS-15

Mobile loopback: in active cell operating mode type C must be selected

TDMA frame delay: settable between 0 and 26 frames or automatically determined

Signaling loopback control: on or off

Closed-loop signaling delay: settable between 0 and 5 s

Measurement unit: selectable as percent or count

Numerical results:

number of bits tested, FBER, number of bad bits, TDMA frame delay, Rx level, Rx qual

Multi-measurement capabilities: 1 to 999,000 bits

Concurrency capabilities:

GSM FBER measurements cannot be made concurrently with GSM BER measurements, GSM decoded audio level measurements, or while speech is provided on the downlink TCH; GSM FBER measurements can be made concurrently with all other measurements

Supplemental characteristics

Measurement resolution: 0.01 percent

(E)GPRS multislot BER measurement

Types of signals measured:

PRBS-15 data sent on GMSK or 8PSK downlink PDTCH(s) and looped back by the mobile

Minimum input level:

for warranted performance, uplink signals at test set's RF IN/OUT must have transmit power \geq -30 dBm and

- ≤ 25 dB difference in power between levels of adjacent GMSK timeslots sent on GPRS signals,
- ≤ 20 dB difference in power between levels of adjacent GMSK timeslotssent on EGPRS signals, or
- ≤ 10 dB difference in power between levels of adjacent 8PSK timeslots

Residual BER:

< 10⁻⁶

Connection types:

ETSI type B in active cell GPRS or EGPRS operating mode or SRB loopback in active cell EGPRS operating mode

Measurement data patterns:

with data connection type ETSI B (unack) and data looped back by the mobile, selectable as all zeros, all ones, alternate bits, alternate pairs, alternate quades, PRBS-15, fixed 2B (hex), or custom

GPRS block delay:

settable from 1 to 12 blocks or automatically determined

EGPRS close loop signaling delay: settable from 0 to 5 s

EGPRS loopback delay:

from 0 to 20

GPRS zero bad blocks:

settable as off or on; when on, all bits within a bad block are set to zero

Numerical results:

number of bits tested, BER, bit error count, GPRS block delay, EGPRS loopback delay

Multi-measurement capabilities:

1 to 999,000 bits

Concurrency capabilities:

(E)GPRS BER measurements cannot be made concurrently with (E)GPRS BLER measurements, but can be made concurrently with all other measurements

Supplemental characteristics

Measurement resolution: 0.01 percent

(E)GPRS multislot BLER measurement

Types of signals measured:

GMSK data looped back by the mobile using connection type ETSI type B (unack), 8PSK data looped back by the mobile using connection type SRB loopback, or information reported by the mobile in Packet_Uplink_ Ack_Nack messages using connection type ETSI type B (ack) or BLER

Minimum input level:

for warranted performance, uplink signals at test set's RF IN/OUT must have transmit power $\geq -30~dBm$ and

- ≤ 25 dB difference in power between levels of adjacent GMSK timeslots sent on GPRS signals,
- ≤ 20 dB difference in power between levels of adjacent GMSK timeslots sent on EGPRS signals, or
- ≤ 10 dB difference in power between levels of adjacent 8PSK timeslots

Connection types:

settable as ETSI type B (unack), ETSI type B (ack), BLER (for GPRS), or SRB loopback (for EGPRS)

Measurement data patterns:

with data connection type ETSI B (unack) and data looped back by the mobile, selectable as all zeros, all ones, alternate bits, alternate pairs, alternate quads, PRBS-15, or fixed 2B (hex), or custom

Block delay:

settable between 1 and 6 blocks or automatically determined

Numerical results:

number of blocks tested, BLER, block error count, BLER of each burst (for connection type ETSI type B (ack), or BLER), level of each downlink burst, block delay

Multi-measurement capabilities:

1 to 99,000 blocks

Concurrency capabilities:

GPRS/EGPRS BLER measurements cannot be made concurrently with GPRS/EGPRS BER measurements, but can be made concurrently with all other measurements

Supplemental characteristics

Measurement resolution: 0.01 percent

Transmitter measurement specifications

Unless otherwise specified, transmitter measurements can be performed in active cell (GSM), active cell (GPRS), and active cell (EGPRS) operating modes.

GMSK multislot-tolerant phase and frequency error measurement

Types of signals measured:

normal GMSK bursts from GPRS or EGPRS signals, RACH bursts for a single uplink timeslot only

Multislot input signal conditions:

 \leq 30 dB difference in power level between adjacent timeslots

Multislot signal measurement capability:

measurement of one user-specified timeslot transmitted as a single timeslot or two adjacent timeslots

GPRS frequency capture range:

signal must be within $\pm 100 \text{ kHz}$ of test set's expected frequency for warranted performance

EGPRS frequency capture range:

signal must be within $\pm 1 \text{ kHz}$ of test set's expected frequency for warranted performance

Minimum input level:

signal at test set's RF IN/OUT must have transmit power ≥ -15 dBm for warranted performance

Frequency error measurement accuracy:

 $<\pm12$ Hz plus timebase accuracy for normal bursts, $<\pm18$ Hz plus timebase accuracy for RACH bursts

When using the RF generator as the RF reference frequency for the mobile, the RF generator frequency error relative to the timebase reference must be added

rms phase error measurement accuracy: < 1 degree</pre>

Peak phase error measurement accuracy: < 4 degrees

Trigger sources: RF rise, protocol, immediate, auto, external

Trigger delay: settable between ±2.31 ms

Trigger qualification:

on or off

Burst synchronization:

midamble, RF amplitude, none for a single uplink timeslot; midamble for two uplink timeslots and all EGPRS signals

Confidence level:

settable from 80 to 99.99 percent

Peak phase error pass/fail maximum limit: settable between 0 and 20 degrees

rms phase error pass/fail maximum limit: settable between 0 and 5 degrees

Frequency error pass/fail maximum limit: settable between 0 and 0.1 ppm

Numerical results:

rms and peak phase error, frequency error, pass/fail for each result

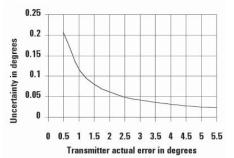
Displayed graphical results:

peak phase error in degrees versus bits and demodulated bits with settable marker and pass/fail limits, variable bit and amplitude axes

Multi-measurement capabilities:

1 to 999 bursts; maximum, minimum, and average phase and frequency error, and worst-case frequency error results

Concurrency capabilities:


GMSK multislot-tolerant phase and frequency error measurements can be made concurrently with all other measurements

Supplemental characteristics

Frequency error measurement resolution: 0.01 Hz

Phase error measurement resolution: 0.01 degrees

Typical rms phase error uncertainty versus transmitter actual error:

8PSK multislot-tolerant modulation accuracy measurement

All specifications for the 8PSK multislottolerant modulation accuracy measurement are valid for the frequency ranges 700 to 800 MHz, 810 to 960 MHz, and 1.7 to 1.99 GHz.

Types of signals measured:

normal 8PSK bursts

Multislot input signal conditions:

 \leq 30 dB difference in power level between adjacent timeslots

Multislot signal measurement capability:

measurement of one user-specified timeslot transmitted as a single timeslot or two adjacent timeslots

Frequency capture range:

signal must be within ±200 Hz of test set's expected frequency for warranted performance

Minimum input level:

signal at test set's RF IN/OUT must have 8PSK burst power ≥ -15 dBm for warranted performance

Residual rms EVM:

< 1 percent

rms EVM measurement accuracy:

< +(0.75 - 0.025 x rms EVM in percent) or -(0.75 + 0.025 x rms EVM in percent) for measured average rms EVM between 1 and 10 percent

Sample EVM measurement accuracy: < ±4 percent

Frequency error measurement accuracy: < ±10 Hz plus timebase accuracy

Origin offset suppression measurement accuracy:

 $<\pm1.5$ dB for measured origin offset suppression between 25 and 40 dB

Trigger sources:

RF rise, protocol, immediate, auto, external

Trigger delay:

settable between ±2.31 ms

Burst synchronization: midamble

Numerical results:

rms, peak, and 95th percentile EVM, frequency error, origin offset suppression, amplitude droop, rms and peak magnitude errors and phase errors, IQ imbalance; sample EVM and probability as part of sample EVM histogram

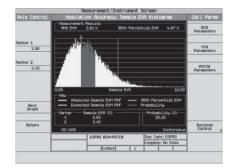


Figure 2: EGPRS modulation accuracy measurement includes a graphical sample EVM histogram to observe your device's statistical EGPRS performance.

Displayed graphical results:

EVM versus symbol, demodulated symbols in octal and binary, magnitude error versus symbol, phase error versus symbol, sample EVM histogram with plots of measured sample EVM PDF, expected sample EVM PDF, 95th percentile EVM, and probability with settable markers and variable axes

Multi-measurement capabilities:

1 to 999 bursts; maximum, minimum, and average results

Concurrency capabilities:

8PSK multislot-tolerant modulation accuracy measurements can be made concurrently with all other measurements

Supplemental characteristics

EVM measurement resolution: 0.01 percent

Frequency error measurement resolution: 0.01 Hz

Origin offset suppression measurement resolution: 0.01 dB

Amplitude droop measurement resolution: 0.01 dB

Magnitude error measurement resolution: 0.01 percent

Phase error measurement resolution: 0.01 degrees

IQ imbalance measurement resolution: 0.01 dB

Probability measurement resolution: 0.01 percent

GSM/GPRS/EGPRS multislot transmit power measurement

The following specifications are valid when the burst capture range is set to **Single**:

Types of signals measured:

normal GMSK bursts sent as GSM or GPRS signals, CW, RACH bursts for a single uplink timeslot only

Multislot input signal conditions:

 \leq 30 dB difference in power level between adjacent timeslots

Multislot signal measurement capability:

measurement of one user-specified timeslot transmitted as a single timeslot or two adjacent timeslots

Frequency capture range:

signal must be within ±100 kHz of test set's expected frequency for warranted performance

Minimum input level:

signal at test set's RF IN/OUT must have transmit power ≥ -25 dBm for warranted performance

Measurement accuracy at RF IN/OUT port between +20 and +55 °C:

Accuracy	Frequency	
(dBm)	(MHz)	Timeslot
< ±0.27	810 to 960	Single slot and
< ±0.29	450 to 496	multislot at the
	700 to 800	same level
	1700 to 1990	
< ±0.52	810 to 960	Multislot at
< ±0.54	450 to 496	different levels
	700 to 800	
	1700 to 1990	

Measurement accuracy when RF OUT ONLY port is selected for signal generation (in addition to measurement accuracy at RF IN/OUT port):

Accuracy	Frequency
< ±0.01 dB	450 to 496 MHz
	700 to 800 MHz
	810 to 960 MHz
$< \pm 0.04 \text{ dB}$	1700 to 1990 MHz

VSWR at RF IN/OUT:

< 1.14:1 for 450 to 496 MHz and 700 to 960 MHz, < 1.2:1 for 1.7 to 1.99 GHz

Trigger sources:

RF rise, protocol, immediate, auto, external

Trigger delay:

settable between ±2.31 ms

Burst synchronization:

RF amplitude (GSM/GPRS midamblesynchronized transmit power result is available as part of the multislot power versus time measurement)

Numerical result:

GMSK transmit power

Multi-measurement capabilities:

1 to 999 bursts; minimum, maximum, average, and standard deviation results

Concurrency capabilities:

GSM/GPRS multislot-tolerant transmit power measurements can be made concurrently with all other measurements

Supplemental characteristics

Extended amplitude range:

results are provided for signals at test set's RF IN/OUT port for transmit power within -10 and +5 dB of expected power

Typical measurement accuracy at RF IN/ OUT port:

Accuracy	Frequency	
(dB)	(MHz)	Timeslot
< ±0.10	450 to 496	Single slot and
< ±0.13	700 to 800	multislot at the
	810 to 960	same level
< ±0.14	1700 to 1990	
< ±0.32	450 to 496	Multislot at
< ±0.36	700 to 800	different levels
	810 to 960	
< ±0.38	1700 to 1990	

Typical measurement accuracy when RF OUT ONLY port is selected for signal generation (in addition to typical measurement accuracy at RF IN/OUT port):

Accuracy	Frequency
< ±0.01 dB	450 to 496 MHz
	700 to 800 MHz
	810 to 960 MHz
$< \pm 0.04 \ dB$	1700 to 1990 MHz

Typical measurement repeatability: < ± 0.05 dB

Measurement resolution: 0.01 dB

The following specifications are valid when the burst capture range is set to **All**:

Types of signals measured:

normal GMSK bursts sent as GSM or GPRS signals, normal GMSK and 8PSK bursts sent as EGPRS signals, CW, RACH bursts for a single uplink timeslot only

Multislot input signal conditions:

< 30 dB difference in power level between adjacent time slots. When autoranging is off, input signal transmit power must be within ± 3 dB for highest burst and +3 dB/-30 dB for other bursts relative to expected power of highest burst; when autoranging is on, input signal transmit power must be within +3 dB/-30dB for all bursts

Multislot signal measurement capability:

simultaneous measurement of all bursts up to four uplink timeslots in the multislot Class 12 configuration

Frequency capture range:

signal must be within ±100 kHz of the test set's expected frequency for warranted performance

Minimum input level:

for warranted performance, signal at test set's RF IN/OUT must have transmit power > -25 dBm for GMSK transmit power or 8PSK burst power, and > -20 dBm for 8PSK estimated carrier power

Measurement accuracy for GMSK transmit power at RF IN/OUT port between +20 and +55 °C:

Accuracy	Frequency	
(dBm)	(MHz)	Timeslot
< ±0.27	700 to 800	Single slot
	810 to 960	
< ±0.29	450 to 496	
	1700 to 1990	
< ±0.32	700 to 800	Multislot at the
	810 to 960	same level
< ±0.34	450 to 496	
	1700 to 1990	
< ±0.70	700 to 800	Multislot at
	810 to 960	different levels
< ±0.72	450 to 496	
	1700 to 1990	

Measurement accuracy for 8PSK burst power at RF IN/OUT port between +20 and +55 °C:

Accuracy (dBm)	Frequency (MHz)	Timeslot
< ±0.32	700 to 800	Single slot
	810 to 960	
< ±0.33	450 to 496	
	1700 to 1990	
< ±0.36	700 to 800	Multislot at
	810 to 960	the same level
< ±0.37	450 to 496	
	1700 to 1990	
< ±0.75	700 to 800	Multislot at
	810 to 960	different levels
< ±0.76	450 to 496	
	1700 to 1990	

Measurement accuracy for 8PSK estimated carrier power at RF IN/OUT port between +20 and +55 °C:

Accuracy	Frequency	Timeslot
(dBm)	(MHz)	
< ±0.42	700 to 800	Single slot
	810 to 960	
< ±0.43	450 to 496	
	1700 to 1990	
< ±0.46	700 to 800	Multislot at
	810 to 960	the same level
< ±0.47	450 to 496	
	1700 to 1990	
< ±0.85	700 to 800	Multislot at
	810 to 960	different levels
< ±0.86	450 to 496	
	1700 to 1990	

Measurement accuracy when RF OUT ONLY port is selected for signal generation (in addition to measurement accuracy at RF IN/OUT port):

Accuracy	Frequency
< ±0.01 dB	450 to 496 MHz
	700 to 800 MHz
	810 to 960 MHz
< ±0.04 dB	1700 to 1990 MHz

VSWR at RF IN/OUT:

< 1.14:1 for 450 to 496 MHz and 700 to 960 MHz, < 1.2:1 for 1.7 to 1.99 GHz

Trigger sources:

RF rise, protocol, immediate, auto, external

Trigger delay:

settable between ±2.31 ms

Burst synchronization: midamble

Numerical result:

GMSK transmit power, 8PSK burst power, 8PSK estimated carrier power

Multi-measurement capabilities:

1 to 999 bursts; minimum, maximum, average, and standard deviation results

Concurrency capabilities:

GSM/GPRS/EGPRS multislot transmit power measurements can be made concurrently with all other measurements

Supplemental characteristics

Extended amplitude range:

results are provided for signals at test set's RF IN/OUT port for transmit power within –10 and +5 dB of expected power

Typical measurement accuracy for GMSK transmit power at RF IN/OUT port:

Accuracy (dB)	Frequency (MHz)	Timeslot
< ±0.10	700 to 800	Single slot
	810 to 960	
< ±0.11	450 to 496	
	1700 to 1990	
< ±0.14	700 to 800	Multislot at
	810 to 960	the same level
< ±0.15	450 to 496	
	1700 to 1990	
< ±0.29	700 to 800	Multislot at
	810 to 960	different levels
< ±0.30	450 to 496	
	1700 to 1990	

Typical measurement accuracy for 8PSK burst power at RF IN/OUT port:

Accuracy (dB)	Frequency (MHz)	Timeslot
< ±0.14	700 to 800	Single slot
	810 to 960	
< ±0.15	450 to 496	
	1700 to 1990	
< ±0.17	700 to 800	Multislot at
	810 to 960	the same level
< ±0.17	450 to 496	
	1700 to 1990	
< ±0.33	700 to 800	Multislot at
	810 to 960	different levels
< ±0.34	450 to 496	
	1700 to 1990	

Typical measurement accuracy when RF OUT ONLY port is selected for signal generation (in addition to typical measurement accuracy at RF IN/OUT port):

Accuracy	Frequency	
(dB)	(MHz)	
< ±0.01	450 to 496	
	700 to 800	
	810 to 960	
< ±0.04	1700 to 1990	

Typical measurement repeatability: $< \pm 0.05 \text{ dB}$

Measurement resolution: 0.01 dB

EGPRS multislot-tolerant transmit power measurement

Types of signals measured:

normal GMSK and 8PSK bursts sent as EGPRS signals

Multislot input signal conditions:

≤ 30 dB difference in power level between adjacent timeslots

Multislot signal measurement capability:

measurement of one user-specified timeslot transmitted as a single timeslot or two adjacent timeslots

Frequency capture range:

signal must be within ±1 kHz of test set's expected frequency for warranted performance

Minimum input level:

for warranted performance, signal at test set's RF IN/OUT must have transmit power

• \geq -25 dBm for GMSK transmit power or 8PSK burst power, and

• ≥ -20 dBm for 8PSK estimated carrier power

Measurement accuracy for GMSK transmit power or 8PSK burst power at RF IN/ OUT port between +20 and +55 °C:

Accuracy (dB)	Frequency (MHz)	Timeslot
< ±0.32	700 to 800	Single slot and
	810 to 960	multislot at the
< ±0.34	450 to 496	same level
	1700 to 1990	
< ±0.57	700 to 800	Multislot at
	810 to 960	different levels
< ±0.59	450 to 496	
	1700 to 1990	

Measurement accuracy for 8PSK estimated carrier power at RF IN/OUT port between +20 and +55 °C:

Accuracy	Frequency	
(dB)	(MHz)	Timeslot
< ±0.40	700 to 800	Single slot and
	810 to 960	multislot at the
< ±0.42	450 to 496	same level
	1700 to 1990	
< ±0.65	700 to 800	Multislot at
	810 to 960	different levels
< ±0.67	450 to 496	
	1700 to 1990	

Measurement accuracy when RF OUT ONLY port is selected for signal generation (in addition to measurement accuracy at RF IN/OUT port):

Accuracy	Frequency
< ±0.01 dB	450 to 496 MHz
	700 to 800 MHz
	810 to 960 MHz
< ±0.04 dB	1700 to 1990 MHz

VSWR at RF IN/OUT:

< 1.14:1 for 450 to 496 MHz and 700 to 960 MHz, < 1.2:1 for 1.7 to 1.99 GHz

Trigger sources:

RF rise, protocol, immediate, auto, external

Trigger delay:

settable between ±2.31 ms

Burst synchronization: midamble

Numerical results:

GMSK transmit power, 8PSK burst power, 8PSK estimated carrier power

Multi-measurement capabilities:

1 to 999 bursts; minimum, maximum, average, and standard deviation results

Concurrency capabilities:

EGPRS multislot-tolerant transmit power measurements can be made concurrently with all other measurements

Supplemental characteristics

Extended amplitude range:

results are provided for signals at test set's RF IN/OUT port for transmit power within -10 and +5 dB of expected power

Typical measurement accuracy for GMSK transmit power or 8PSK burst power at RF IN/OUT port:

Accuracy	Frequency	
(dB)	(MHz)	Timeslot
< ±0.15	700 to 800	Single slot and
	810 to 960	multislot at the
< ±0.16	450 to 496	same level
	1700 to 1990	
< ±0.35	700 to 800	Multislot at
	810 to 960	different levels
< ±0.36	450 to 496	
	1700 to 1990	

Typical measurement accuracy when RF OUT ONLY port is selected for signal generation (in addition to typical measurement accuracy at RF IN/OUT port):

Accuracy	Frequency
< ±0.01 dB	450 to 496 MHz
	700 to 800 MHz
	810 to 960 MHz
< ±0.04 dB	1700 to 1990 MHz

Typical measurement repeatability: < ± 0.05 dB

Measurement resolution: 0.01 dB

Multislot power versus time measurement

All specifications for the multislot power versus time measurement are valid between +20 and +55 °C and using high linearity ranging mode. GSM/GPRS/EGPRS multislot transmit power measurement or EGPRS multislot-tolerant transmit power measurement accuracy specifications apply to output power results.

Types of signals measured:

normal GMSK and 8PSK bursts, CW, RACH bursts for a single uplink timeslot only

Multislot input signal conditions:

 \leq 30 dB difference in power level between adjacent timeslots

Multislot signal measurement capability:

measurement of a single GMSK or 8PSK uplink timeslot or two adjacent GMSK and/or 8PSK uplink timeslots

Frequency capture ranges:

GSM or GPRS signal must be within ± 10 kHz and EGPRS signal must be within ± 1 kHz of test set's expected frequency for warranted performance

Minimum input level:

signal at test set's RF IN/OUT must have transmit power ≥ -15 dBm for warranted performance

Mask placement timing accuracy:

 $< \pm 0.1$ symbols with midamble synchronization

Relative measurement accuracy (referenced to average output power during useful part of burst):

Specification	Power range
< ±0.5 dB	-7 to +1 dB for GMSK bursts
	-7 to +4 dB for 8PSK bursts
< ±1.0 dB	-20 to < -7 dB
< ±2.0 dB	−32 to < −20 dB
< ±2.7 dB	–50 to < –32 dB,
	\geq -46 dBm ¹
< ±3.0 dB	–60 to < –50 dB,
	\geq -46 dBm ¹

¹ For measurements on the second burst in a multislot configuration where the first burst is at a higher power than the second burst, the minimum power is the higher of the following three cases:

-60 dB below reference

-70 dB below reference plus the offset

between the two burst power levels • -46 dBm

Trigger sources:

RF rise, protocol, immediate, auto, external

Trigger delay: settable between ±2.31 ms

Burst synchronization:

midamble, RF amplitude, none for a single GSM or GPRS uplink timeslot; midamble for two GSM or GPRS uplink timeslots or any EGPRS uplink timeslots

Tx power method:

estimated carrier power or average burst power

Ranging mode:

high linearity or high dynamic range

Marker measurement points:

12 time points within each burst are definable

PCS ETSI limit:

selection of narrow or relaxed mask in PCS 1900 MHz band

Mask types:

selectable as ETSI, custom 1, custom 2, or no mask for each burst and ETSI, custom, or no mask for guard period between bursts

Numerical results:

- for entire single or multislot signal: pass/fail for rising edge, active part(s), falling edge, and guard period
- for each burst: GMSK transmit power or 8PSK burst power, worst case upper mask limit margin and time, worst case lower mask limit margin and time, amplitude at marker measurement points

Displayed graphical results:

- for single-slot signals: fixed dBc versus µs views of full, rising edge, falling edge, and useful part of burst
- for multislot signals: fixed dBc versus µs views of both bursts, guard period, burst 1, and burst 2
- for all signals: ETSI-defined mask, pass/fail indicators, settable marker, and variable time and amplitude axes

Multi-measurement capabilities:

1 to 999 bursts; minimum, maximum, average, and standard deviation results

Concurrency capabilities:

multislot power versus time measurements can be made concurrently with all other measurements

Supplemental characteristics

Typical relative measurement accuracy: $< \pm 0.25 \text{ dB over } -7 \text{ to } +1 \text{ dB for GMSK}$ bursts, $< \pm 0.25 \text{ dB over } -4 \text{ to } +4 \text{ dB for}$ 8PSK bursts

Typical dynamic range and typical noise floor:

for measurement of the second burst in a multislot configuration with the first burst > 10 dB higher than the second burst,

typical dynamic range:

> (lesser of 74 dB or 84 dB minus power offset between bursts), or

typical noise floor:
 -62 dBm, whichever dominates

For all other single and multislot signals

- **typical dynamic range**: > 74 dB, or
- typical noise floor:
 < -62 dBm, whichever dominates

Measurement resolution: 0.01 dB

Burst timing error measurement

Burst timing error measurement result is available on call setup screen.

Types of signals measured:

normal GMSK or 8PSK bursts, RACH bursts for a single uplink timeslot only

Measurement capture range:

signal must be within $\pm 3 \text{ T}$ (bit periods) of test set's expected position

Minimum input level:

signal at test set's RF IN/OUT must have transmit power \geq -30 dBm and \leq 20 dB difference in levels of adjacent timeslots

Numerical result:

burst timing error

Concurrency capabilities:

burst timing error measurements can be made concurrently with all other measurements, but burst timing result is not available when PDTCH(s) are not active

Supplemental characteristics

Typical measurement repeatability: < ±0.25 T (0.923 μs)

Measurement resolution: 0.25 T (0.923 µs)

Multislot-tolerant output RF spectrum (ORFS) measurement

All specifications for the multislot-tolerant ORFS measurement are valid between +20 and +55 °C. GSM/GPRS/EGPRS multislot transmit power measurement or EGPRS multislot-tolerant transmit power measurement accuracy specifications apply to output power result. These specifications apply to E5515C mainframes with Option 002 supplied after serial number GB46040001 January 2006.

Modulation measurement implementation: performed using a five-pole, synchronouslytuned 30 kHz RBW filter averaged over 40 bits

Switching measurement implementation:

performed using a five-pole, synchronouslytuned 30 kHz RBW filter with peak hold during the whole burst

Types of signals measured: GMSK or 8PSK normal bursts

Multislot input signal conditions:

 \leq 30 dB difference in power level between adjacent timeslots

Multislot signal measurement capability:

measurement of one user-specified timeslot transmitted as a single timeslot or two adjacent timeslots

Frequency capture range:

signal must be within ±200 Hz of test set's expected frequency for warranted performance

Minimum input level:

signal at test set's RF IN/OUT must have transmit power ≥ -10 dBm for warranted performance

Filter options:

digital, analog, and auto

Trigger sources:

RF rise, protocol, immediate, auto, external

Trigger delay: settable between ±2.31 ms

Burst synchronization:

RF amplitude for GSM or GPRS signals, midamble for EGPRS signals

Measurement offsets:

22 modulation and 8 switching offsets from carrier are definable

Pass/fail limits:

ETSI or user-defined

Numerical results:

modulation and switching results at each selected offset, output power, transmit power in 30 kHz bandwidth, modulation and switching pass/fail indicators, modulation type

Displayed graphical results:

fixed dB versus frequency views of modulation, switching, or both modulation and switching, settable marker and pass/ fail limits, modulation and switching pass/ fail indicators, variable frequency and amplitude axes

Multi-measurement capabilities:

1 to 999 measurements; average modulation result, maximum switching result

Concurrency capabilities:

multislot-tolerant ORFS measurements can be made concurrently with all other measurements

Modulation dynamic range:

-74 dBr digital filter-type for default offset frequencies 600 to 1800 kHz, power +10 dBm or greater

Supplemental characteristics

Typical modulation dynamic range:

- –74 dBr digital filter-type for full spectrum, power 0 dBm or greater
- -74 dBr analogue filter-type for full spectrum, power +10 dBm or greater

Typical switching dynamic range:

-70 dBc/-60 dBm (whichever is greater) at 600, 1200, and 1800 kHz offsets, power +10 dBm or greater

Phase and amplitude versus time (PAvT) measurement

Optional PAvT measurement, requires separate license, orderable as part number E1968A-410

All specifications for the PAvT measurement are valid between +20 and +55 $^{\circ}\mathrm{C}$

Types of signals measured:

CW only – discrete amplitude step waveform or continuous ramp waveform

Waveform type: discrete or continuous

Trigger sources: RF rise, immediate, external

Trigger delay: settable between 0 to 10 ms

Trigger threshold: settable between 0 to 30 dB

Measurement timeout: settable between 0.1 to 999.9 s

Continuous measurement count: settable between 1 to 5000

Continuous measurement delay: settable between 0 to 500 ms

Discrete step width: settable between 0.1 to 400 ms

Discrete step count: settable between 1 to 512

Discrete step center: settable between 0.05 to 399.95 ms

Concurrency capabilities:

PAvT measurements cannot be made concurrently with any other measurements

Fast device tune (FDT) measurement

Optional FDT measurement, requires separate license, orderable as part number E1999A-201

All specifications for the FDT measurement are valid for the frequency ranges 450 to 496 MHz, 740 to 960 MHz, and 1700 to 1990 MHz

FDT (downlink) generator specifications

FDT absolute output level accuracy with GMSK modulation on:

Ranges
Single slot from
–110 to –13 dBm
1 multislot level between
–110 and –13 dBm
2 multislot levels
≤ 20 dB apart

Peak phase error:

< ±5 degrees

RMS phase error: < 1 degree

< I degree

Frequency error:

 $< \pm 0.02$ ppm plus timebase reference

Supplemental characteristics

Typical FDT absolute output level accuracy with GMSK modulation on:

Specification	Ranges
< ±1.40 dB	Single slot from
	–110 to –13 dBm
< ±1.40 dB	1 multislot level between
	—110 and —13 dBm
< ±1.70 dB	2 multislot levels
	≤ 20 dB apart

Typical burst modulation on/off ratio (*referenced to lowest signal level*): > 50 dB

FDT transmit power measurement specifications:

Input signal conditions:

first slot has to be the highest burst, and power level of first timeslot has to be within \pm 3dB of expected power

Multislot signal measurement capability: measurement of up to seven timeslots

Minimum input level:

for warranted performance, signal at test set's RF IN/OUT must have transmit power \geq 14 dBm for first timeslot, and ≥ -25 dBm for second to seventh timeslot

Measurement accuracy for FDT GMSK transmit power at RF IN/OUT port between +20 and +55 °C:

Accuracy (dBm)	Frequency (MHz)
< ±0.85	700 to 800
	810 to 960
< ±0.87	450 to 496
	1700 to 1990

Frequency capture range:

signal must be within ±70 kHz of test set's expected frequency for warranted performance

VSWR at RF IN/OUT:

< 1.14:1 for 450 to 496 MHz and 700 to 960 MHz, < 1.2:1 for 1.7 to 1.99 GHz

Trigger sources:

fixed as protocol trigger (RF rising trigger for the first step)

Trigger delay:

±2.31 ms

Concurrency capabilities:

fast device tune measurements cannot be made concurrently with other measurements

Supplemental characteristics

Typical measurement accuracy for FDT GMSK transmit power at RF IN/OUT port between +20 and +55 °C:

Accuracy (dBm)	Frequency (MHz)
< ±0.40	700 to 800
	810 to 960
< ±0.41	450 to 496
	1700 to 1990

Typical measurement repeatability: < ±0.05 dB

Measurement resolution: 0.01 dB

General-purpose spectrum monitor

Operating modes: active cell and test mode

Measurement modes: swept mode or zero span

Frequency ranges:

although the spectrum monitor is available at any frequency supported by the test set, specifications apply only inside of the calibrated bands: 450 to 496 MHz, 700 to 800 MHz, 810 to 960 MHz, and 1.7 to 1.99 GHz

Frequency spans, resolution bandwidth, displayed dynamic ranges:

coupled, with the following combinations available:

		Displayed
Span	RBW	dynamic range
100 MHz	5 MHz	50 dB
80 MHz	1 MHz	55 dB
40 MHz	300 kHz	60 dB
20 MHz	100 kHz	65 dB
12 MHz	100 kHz	65 dB
10 MHz	100 kHz	65 dB
5 MHz	30 kHz	70 dB
4 MHz	30 kHz	70 dB
2.5 MHz	10 kHz	75 dB
1.25 MHz	3 kHz	80 dB
500 kHz	1 kHz	80 dB
125 kHz	300 Hz	80 dB
0	1 MHz	55 dB
0	300 kHz	60 dB
0	100 kHz	65 dB

RBW filter types:

flattop in swept mode, Gaussian in zero span

Zero span sweep time: settable from 50 µs to 70 ms

Zero span offset time: settable from 0 to 10 s

Reference level range:

settable from -50 to +37 dBm or automatically determined

Amplitude scaling:

settable from 0.1 to 20 dB/division in 0.1 dB steps

Trigger source: immediate, protocol, RF rise, external, auto

Trigger delay: settable between ±50 ms

Peak threshold: settable from -120 to +37 dBm

Peak excursion: settable from 1.2 to 100 dB

Trace functions:

clear write, max hold, min hold

Detector type: peak or sample

Averaging capabilities: settable between 1 and 999, or off

Marker functions:

three independent markers with modes of normal, delta, and off; operations are peak search, marker to expected power, and marker to expected frequency

Concurrency capabilities:

spectrum monitor analysis can be performed concurrently with all measurements

Supplemental characteristics

Typical level accuracy:

- < ± 2 dB for signals within 50 dB of a reference level ≥ -10 dBm and RBW < 5 MHz,
- < ±2 dB for signals within 30 dB of a reference level < -10 dBm and RBW = 5 MHz using 5 averages,
- < ±3.5 dB for signals > -70 dBm and within 50 dB of a reference level < -10 dBm with RBW < 5 MHz

Displayed average noise level:

< –90 dBm for reference level of –40 dBm and 30 kHz bandwidth

Typical residual responses:

< -70 dB with input terminated, reference level of -10 dBm and RF generator power < -80 dBm

Typical spurious responses:

< -50 dBc with expected frequency tuned to carrier, carrier > 420 MHz, signal and reference level at -10 dBm and all spectral components within 100 MHz of carrier

Frequency resolution: 1 Hz

Marker amplitude resolution: 0.01 dB

GSM decoded audio level measurement

The MS needs to be stimulated with a pulsed audio signal at a 10 Hz rate with 50 percent duty cycle for the decoded audio level measurement to provide accurate results.

Types of signals measured:

encoded audio present on uplink TCH

Measurement range: 200 Hz to 3.6 kHz

Measurement accuracy:

observed inaccuracies are due to MS encoder errors since the algorithm in the test set contributes no bit errors

Band pass filter capabilities:

100 Hz bandwidth, tunable from 200 Hz to 3.6 kHz, selectable as on or off

Measurement trigger source: immediate

Measurement synchronization: none required

Numerical result: rms audio level

Multi-measurement capabilities:

1 to 999 measurements; average, minimum, maximum, and standard deviation results

Concurrency capabilities:

GSM decoded audio level measurements cannot be made concurrently with GSM BER or GSM FBER measurements; GSM decoded audio level measurements can be made concurrently with all other measurements

Supplemental characteristics

Measurement resolution: 0.01 percent

Audio generator specifications

Frequency

Operating range: 100 Hz to 20 kHz

Accuracy: same as timebase reference

Supplemental characteristics

Typical operating range: 1 Hz to 20 kHz

Frequency resolution: 0.1 Hz

Output level from AUDIO OUT connector

Ranges:

0 to 1 V peak, 1 to 9 V peak (into \geq 600 Ω)

Accuracy:

 $< \pm (1.5\% \text{ of setting + resolution})$ when output is DC coupled

Distortion:

< 0.1 percent for 0.2 to 9 V peak into \geq 600 Ω

Pulse mode:

pulsed audio signal at a 10 Hz rate with 50 percent duty cycle, selectable as on or off (for use with the GSM decoded audio level measurement)

Coupling mode:

selectable as DC or AC (5 μF in series with output)

Supplemental characteristics

Typical maximum output current: 100 mA peak into 8 Ω

Typical output impedance: < 1.5 Ω at 1 kHz when output is DC coupled

Typical DC offset (when output is DC coupled): < 1 mV for 0 to 1 V peak output, < 10 mV peak for 1 to 9 V peak output

Output level resolution: < 0.5 mV for 0 to 1 V peak output, < 5.0 mV for 1 to 9 V peak output

GSM analog audio measurement specifications

All analog audio measurement specifications apply to signals present at test set's AUDIO IN ports.

De-emphasis: 750 µs de-emphasis selectable as off or on

Expandor:

selectable as off or on with reference level setting of 10 mV to 10 V $\,$

Filters:

none, C-message, 50 Hz to 15 kHz band pass, 300 Hz to 15 kHz band pass, or 100 Hz bandwidth tunable band pass, tunable over 300 Hz to 15 kHz

GSM analog audio level measurement

Types of signals measured: sinusoidal audio signals

Measurement frequency range: 100 Hz to 15 kHz

AUDIO IN level range:

7.1 mV to 20 V peak (5 mV to 14.1 V rms)

Measurement accuracy:

- $< \pm (2 \text{ percent of reading +}$ resolution) for 100 Hz to $\le 8 \text{ kHz}$,
- < ±(3 percent of reading + resolution) for > 8 to 20 kHz

Measurement THD plus noise: < 200 µV rms

Measurement detectors: rms or peak

Measurement trigger source: immediate

Measurement synchronization: none required

Numerical result: audio level

Multi-measurement capabilities:

1 to 999 measurements; average, minimum, maximum, and standard deviation results

Concurrency capabilities:

GSM analog audio level measurements cannot be made concurrently with GSM multi-tone audio, but can be made concurrently with all other measurements

Supplemental characteristics

Typical measurement accuracy: < ±1.2 percent of reading for 100 Hz to ≤ 8 kHz and 20 mV to 20 V peak

Typical external input impedance: 100 k Ω in parallel with 105 pF

Measurement resolution: 0.3 percent of expected level setting or

0.2 mV, whichever is greater

GSM analog audio distortion measurement

Types of signals measured: sinusoidal audio signals

Measurement frequency range: 100 Hz to 10 kHz

AUDIO IN level range: 42.4 mV to 20 V peak (30 mV to 14.1 V rms)

Measurement accuracy: < ±12 percent of reading (±1.0 dB) for distortion > 0.67 percent

Residual THD plus noise: <-60~dB or 200 μV rms, whichever is greater

Measurement trigger source: immediate

Measurement synchronization: none required

Numerical result: audio distortion

Multi-measurement capabilities:

1 to 999 measurements; average, minimum, maximum, and standard deviation results

Concurrency capabilities:

GSM analog audio distortion measurements cannot be made concurrently with GSM multi-tone audio, but can be made concurrently with all other measurements

Supplemental characteristics

Measurement resolution: 0.1 percent

GSM analog audio frequency measurement

Types of signals measured: sinusoidal audio signals

Measurement frequency range: 100 Hz to 15 kHz

AUDIO IN level range: 7.1 mV to 20 V peak (5 mV to 14.1 V rms)

AUDIO IN signal conditions: signal at test set's AUDIO IN must have signal-to-noise ratio > 30 dB for warranted performance

Measurement accuracy: < 0.1 Hz averaged over 10 measurements, < 1.0 Hz for a single measurement

Measurement THD plus noise: $< 200 \ \mu V \ rms$

Measurement trigger source: immediate

Measurement synchronization: none required

Numerical result: audio frequency

Multi-measurement capabilities:

1 to 999 measurements; average, minimum, maximum, and standard deviation results

Concurrency capabilities:

GSM analog audio frequency measurements cannot be made concurrently with GSM multi-tone audio, but can be made concurrently with all other measurements

Supplemental characteristics

Measurement resolution: 0.1 Hz

GSM analog audio SINAD measurement

Types of signals measured: sinusoidal audio signals

Measurement frequency range: 100 Hz to 10 kHz

AUDIO IN level range: 42.4 mV to 20 V peak (30 mV to 14.1 V rms)

Measurement accuracy: < ±1.0 dB for SINAD < 43.5 dB

Residual THD plus noise: < -60 dB or 200 μV rms, whichever is greater

Measurement trigger source: immediate

Measurement synchronization: none required

Numerical result: SINAD ratio

Multi-measurement capabilities: 1 to 999 measurements; average, minimum, maximum, and standard deviation results

Concurrency capabilities:

GSM analog audio SINAD measurements cannot be made concurrently with GSM multi-tone audio, but can be made concurrently with all other measurements

Supplemental characteristics

Measurement resolution: 0.01 dB

GSM multi-tone audio

Downlink audio measurement mode

Description:

test set generates a multi-tone audio signal and encodes it into speech frames sent on the downlink traffic channel; the MS decodes the received speech frames and provides audio output via a speaker connected to the test set's AUDIO IN port

Applicable specifications:

GSM analog audio measurement specifications apply to measured results

Analyzer downlink reference level: settable between 100 mV and 5 V

Multi-tone audio generator downlink levels:

total level settable between 0 and 70 percent of 0 dB reference or 1 to 20 levels are settable between 0 and 70 percent of 0 dB reference, where the total level of all tones must be < 70 percent of 0 dB reference

Expected AUDIO IN peak voltage:

settable between 1 mV and 20 V peak

Uplink audio measurement mode

Description:

test set generates a multi-tone audio signal out of the AUDIO OUT port connected to the MS's microphone; the MS encodes the tones into speech frames on the uplink traffic channel and the test set decodes the received speech frames

Applicable specifications:

audio generator specifications apply to multi-tone audio signal at the AUDIO OUT port; GSM decoded audio level measurement specifications apply to measured results

Analyzer uplink reference level:

settable between 1 and 100 percent of 0 dB reference

Multi-tone audio generator uplink levels: total level settable between 0 and 4.5 V rms, or 1 to 20 levels are settable between 0 and 4.5 V rms, where the total level of all tones must be < 4.5 V rms

Both measurement modes

Analyzer 0 dB reference mode: absolute or relative

Analyzer reference tone: settable between 1 and 20 Hz

Device settling time:

settable between 20 ms and 1 s

SINAD/Distortion (on audio tone 1) state: on or off

Multi-tone audio generator frequencies:

1 to 20 frequencies are settable between 10 Hz and 4 kHz or off; 7 preset states are selectable as multi-tone 140, multi-tone 100, single tone 300 Hz, single tone 1 kHz, single tone 3 kHz, all tones off, and none

Multi-tone audio analyzer frequencies: use multi-tone audio generator frequencies

or 1 to 20 frequencies are settable between 10 Hz and 4 kHz

Multi-tone audio level limits:

upper and lower limits are settable between $\pm 100 \text{ dB}$ for 1 to 20 audio tones

Numerical results:

audio level, frequency, SINAD, distortion, total generator audio level, total measurement audio level, measurement mode, 0 dB reference

Graphical results:

level and frequency of each audio tone with limits, settable marker and axes

Timebase specifications

Internal high-stability 10 MHz oven-controlled crystal oscillator (OCXO)

Aging rates:

 $< \pm 0.1$ ppm per year, $< \pm 0.005$ ppm peakto-peak per day during any 24-hour period starting 24 hours or more after a cold start

Temperature stability:

 $< \pm 0.01$ ppm frequency variation from +25 °C over the temperature range 0 to +55 °C

Warm-up times:

5 minutes to be within ± 0.1 ppm of f requency at one hour, 15 minutes to be within ± 0.01 ppm of frequency at one hour

Supplemental characteristics

Typical accuracy after a 30-minute warm-up period of continuous operation is derived from:

±[(time since last calibration) x (aging rate) + (temperature stability) + (accuracy of calibration)]

Typical initial adjustment: ±0.03 ppm

±0.03 ppm

External reference input

Input frequency: 10 MHz

Supplemental characteristics

Input frequency range: < ±5 ppm of nominal reference frequency

Input level range: 0 to +13 dBm

Input impedance: 50 Ω nominal

External reference output

Output frequency: same as timebase (internal 10 MHz OCXO or external reference input)

Supplemental characteristics

Typical output level: ≥ 0.5 V rms

Output impedance: 50 Ω nominal

Remote programming

GPIB: IEEE standard 488.2

Remote front panel lockout:

allows remote user to disable the front panel display to improve GPIB measurement speed

Functions implemented:

T6, TE0, L4, LE0, SH1, AH1, RL1, SR1, PP0, DC1, DT0, C0, E2

General specifications

Dimensions:

222 x 426 x 625 mm (8.75 x 16.75 x 24.63 inches)

Weight: 30 kg (66 lbs)

Display: 26.7 cm (10.5 inches), active matrix, color, and liquid crystal

LAN (local area network) port:

RJ-45 connector, 10 Base T Ethernet with TCP/IP support

Operating conditions:

0 to +55 °C, 30 g/m³ absolute humidity (95 percent/+32 °C, 28 percent/+55 °C relative humidity)

Storage conditions:

-20 to +70 °C, 50 g/m 3 absolute humidity, non-condensing (90 percent/+65 °C relative humidity)

Power:

88 to 135 VAC, 193 to 269 VAC, 50 to 60 Hz, 550 VA maximum

Calibration interval:

2 years

EMI:

conducted and radiated interference meets CISPR-11, susceptibility meets IEC 1000-4-2, 1000-4-3, and 1000-4-4

Supplemental characteristics

Typical power consumption: 400 to 450 W continuous

Typical radiated leakage due to RF generator:

< 2.5 µV induced in a resonant dipole antenna one inch from any surface except the underside and rear panel at set RF generator output frequency and output level of –40 dBm with no cable connected to rear-panel LAN port

Test Subscriber Identification Module (SIM) Cards

Test SIM cards are available for purchase from Agilent. Two types are available as follows

- **Programmed GSM SIM card micro-size:** fits most current wireless devices (about 15 x 25 mm), part number 08922-61887
- **Programmed UMTS SIM card micro-size:** fits most current wireless devices (approximately 15 x 25 mm), part number E5515-61286

Ordering Information

For current ordering information, please refer to the configuration guide, literature number 5968-7873E, on the Web at

www.agilent.com/find/8960

For more information on ordering test SIM cards, visit the Agilent site at

www.parts.agilent.com

Agilent Email Updates

www.agilent.com/find/emailupdates Get the latest information on the products and applications you select.

Agilent Direct

www.agilent.com/find/agilentdirect Quickly choose and use your test equipment solutions with confidence.

www.agilent.com/find/open

Agilent Open simplifies the process of connecting and programming test systems to help engineers design, validate and manufacture electronic products. Agilent offers open connectivity for a broad range of system-ready instruments, open industry software, PC-standard I/O and global support, which are combined to more easily integrate test system development.

Remove all doubt

Our repair and calibration services will get your equipment back to you, performing like new, when promised. You will get full value out of your Agilent equipment throughout its lifetime. Your equipment will be serviced by Agilent-trained technicians using the latest factory calibration procedures, automated repair diagnostics and genuine parts. You will always have the utmost confidence in your measurements.

Agilent offers a wide range of additional expert test and measurement services for your equipment, including initial start-up assistance onsite education and training, as well as design, system integration, and project management.

For more information on repair and calibration services, go to:

www.agilent.com/find/removealldoubt

www.agilent.com

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:

www.agilent.com/find/contactus

Americas

AIIICIICAS	
Canada	(877) 894-4414
Latin America	305 269 7500
United States	(800) 829-4444
Asia Pacific	
Australia	1 800 629 485
China	800 810 0189
Hong Kong	800 938 693
India	1 800 112 929
Japan	81 426 56 7832
Korea	080 769 0800
Malaysia	1 800 888 848
Singapore	1 800 375 8100
Taiwan	0800 047 866
Thailand	1 800 226 008
Europe	
Austria	0820 87 44 11
Belgium	32 (0) 2 404 93 40
Denmark	45 70 13 15 15
Finland	358 (0) 10 855 2100
France	0825 010 700

Germany	01805 24 6333*	
	*0.14€/minute	
Ireland	1890 924 204	
Italy	39 02 92 60 8484	
Netherlands	31 (0) 20 547 2111	
Spain	34 (91) 631 3300	
Sweden	0200-88 22 55	
Switzerland (French)	41 (21) 8113811(Opt 2)	
Switzerland (German)	0800 80 53 53 (Opt 1)	
United Kingdom	44 (0) 118 9276201	
Other European Countries:		
www.agilent.com/find/contactus		
Revised: May 7, 2007		

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2003 – 2007 Printed in USA, July 24, 2007 5988-9684EN

Pentium is a U.S. registered trademark of Intel Corporation.

