

5 Nov, 2008

Cellular Platform Power Saving Techniques

PM106

John Leung Technical Marketing Ron Craig 3G System Architecture

Freescale Semiconductor Proprietary Information. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008.

eXtreme Energy Conservation Topics

►RF Circuits

• Low voltage RF CMOS – impact of power system architecture

Baseband – power management techniques

- Dynamic process temperature compensation (DPTC) dynamically adjusts the supply voltage relative to the current temperature and the manufacturing process used
- **Dynamic voltage frequency scaling (DVFS)** reduces operating voltage to the minimum level needed to support only the minimum operating frequency required by applications at any given moment
- Active well biasing reduces standby leakage by lowering the well voltage of the transistor
- **Technology choice** for optimum trade-offs between speed and low-power, high-performance, but with leaky transistors (low voltage threshold) versus ultralow power semiconductor circuits (high voltage threshold) for functional modules with modest performance requirements.

eXtreme Energy Conservation

Power Management IC

Smart MOS Process

low cost CMOS process

Voltage conversion

- Efficient switching regulators
- Standby controls for low power states
- Support for DVFS and DPTC control

CMOS transistor leakage versus process geometry

- Leakage becomes a significant issue at 90 nm process and smaller
- Below 32 nm leakage approaches active power
 - (active power -> CV²F)
 - (static leakage power -> non-clocked power)
 - 90 nm : 15pA/um
 - 65 nm : 20pA/um
 - 45 nm : 250pA/um
 - 32 nm : 450pA/um
- Gate oxide thickness proportional to process geometry node
 - · Leakage and maximum supply voltage

CMOS Leakage

Process can be set to higher speed performance or lower leakage

eXtreme Energy Conservation on Cellular Baseband

Dynamic process temperature compensation (DPTC)

- Dynamically adjusts the supply voltage relative to the temperature and the manufacturing process used
 - Factory set implementation
 - Fuses are set to indicate best Vdd for desired clock speed
 Read by software to set power management Vdd setting
 - Real time DPTC
 - Software controls Vdd based on reference circuits on die

Dynamic voltage frequency scaling (DVFS)

- Reduces Vdd to the minimum level needed to support operating frequency required by applications at any given moment
- Requires finite amount of time to change settings
 - Power management controlled voltage slew
 - Clock setting decrease or increase must follow voltage change to ensure sufficient Vdd to support clocking rate

Bulk bias change

- Negative channel isolation well bias voltage raises Vt slightly
- Positive effect diminished below 90 nm process nodes

eXtreme Energy Conservation on Cellular Baseband

Save and Restore

- Prior to entering deep sleep, software saves critical register/memory
- · Vdd is shut down to circuit sections that were backed up
- Software retrieves and restores register setting upon reactivation

State retention power gating (SRPG)

- Prior to entering wait or deep sleep, critical registers of high performance (high leakage) circuits are automatically backed up to parallel low leakage registers
- Vdd is shut down to high leakage circuits while low leakage backup registers Vdd is maintained
- Usually restricted to processor core registers and other critical registers due to die area impact. (no large memory blocks)

Clock gating

• Inactive circuit blocks are 'frozen' by shutting down their clocking

Power Mode Definitions for MXC91321 Cellular Baseband

Mode	DSP/MCU	Peripherals	Ref Clk	PLL	Regulator
RUN High	Active	Some Active	On	On	Elevated Voltage
RUN Low	Active	Some Active	On	On	Nominal Voltage
WAIT/DOZE	Disabled	Some Active	On	On	Nominal Voltage
STOP	Disabled	Disabled	On	Off	Nominal Voltage
SLEEP	Disabled	Disabled	Off	Off	Reduced Voltage

Power Mode Definitions for MXC91321 Cellular Baseband

Domain	Logical Partition	Nominal Voltage	Maximum Frequency	Notes
BP Domain	P2002 Core	1.6V	312MHz	Overdrive mode
		1.2V	208MHz	
		1.0V	32.768kHz	Reduced V, Leakage control activated
	BP AHB Bus Clock	1.6V	125MHz	
		1.2V	104MHz	
		1.0V	32.768kHz	Reduced Voltage
	BP IP Bus Clock	1.6V	62.5MHz	
		1.2V	52MHz	
		1.0V	32.768kHz	Reduced Voltage
AP/COM	ARM1136™ Core	1.6V	532MHz	Overdrive mode
Domain		12V	400MHz	
		1.0V	32.768kHz	Reduced V, Leakage control activated
	AP/COM AHB Bus Clock	1.2V / 1.6V	133MHz	
		1.0V	32.768kHz	Reduced Voltage
	AP/COM IP Bus Clock	1.2V / 1.6V	66.5MHz	
		1.0V	32.768kHz	Reduced Voltage

65 nm Power Saving Modes

Mode	Apps Proc	DSP	Gen Logic/ Accelerators
Ultra-High Performance	1.1V	1.2V	1.2V
	1000MHz	400MHz	133MHz
High Performance	1.0V	1.2V	1.2V
	800MHz	400MHz	133MHz
Medium Performance	1.0V	1.0V	1.2V
	800MHz	200MHz	133MHz
Low Performance	0.8V	1.0V	1.2V
	200MHz	200MHz	133MHz
Ultra-Low Performance	0.8V	1.0V	1.0V
	200MHz	200MHz	66.5MHz
Standby (DSM)	0.75V	0.9V	0.9V

65 nM Use Case driven DVFS Modes

Mode	Apps Proc	DSP	Gen. Logic	Video Call	Video Record	Video Play	MP3	HSDPA/ E.EDGE	EDGE	2G/3G Voice	2G/3G Standby
UHPM	1.1V 1000MHz	1.2V 400MH z	1.2V 133MHz								
НРМ	1.0V 800MHz	1.2V 400MH z	1.2V 133MHz								
МРМ	1.0V 800MHz	1.0V 200MH z	1.2V 133MHz								
LPM	0.8V 200MHz	1.0V 200MH z	1.2V 133MHz								
ULPM	0.8V 200MHz	1.0V 200MH z	1.0V 66.5MHz								
Standby (DSM)	0.75V	0.9V	0.9V								

RF power savings

►RF CMOS

- Operating Vdd 1.0 to 1.4 vdc
 - Advantage to power converters (switching) supply from battery.

Interfaces

- · Low voltage, differential digital (LVDS) signaling
 - Pushing large signal swings at higher and higher frequencies is not power efficient and creates EMI noise

RF power amplifiers

- Power converters (switchers)
- Stage by-passing

Power Management Integrated Circuit Power Techniques

- Why we still have PMIC chips
 - Handle supply voltage of battery and charging circuitry
 - Cost effective less process layers
- SMOS10 -> power management, 130 nm low cost process
 - Up to 20 volts capable
- Higher speed voltage converter switching for smaller external components – higher switching speed = smaller L & C of filter
 - Challenging drive power (CV²F) of switching transistor gates
 - Pulse skipping modes for low load demands
 - Change to linear mode at very low load demands
- System interlocking control
 - Continuous feedback DVFS, voltage <-> clocking speed

Software involvement in Power reduction

- ► Deep Sleep Mode
 - · Architect early in software plan
- DVFS utilization
 - Resource loading management clock speed & Vdd set based on need
- Modem Processor SW
 - Batch use of interrupts where possible
 - Consideration for cache integrity
 - L1 cache/RAM/ROM fastest
 - Create less clock cycle waits for L2 or external memory
 - ROM much less capacitive load on processor bus due to smaller cell size
 - Total loading on processor bus limits processor speed and impacts power consumption
- Applications Processor SW
 - Power management Driver
 - Efficient OS 'tick' utilization, batching where possible

Related Session Resources

Session Location – Online Literature Library

http://www.freescale.com/webapp/sps/site/homepage.jsp?nodeId=052577903644CB

Sessions

Session ID	Title			

Demos

Pedestal ID	Demo Title

