

5 Nov, 2008

Cellular Platform Power Saving Techniques

PM106

John Leung Ron Craig

Technical Marketing 3G System Architecture

Freescale Semiconductor Proprietary Information. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008.

eXtreme Energy Conservation Topics

►RF Circuits

• **Low voltage RF CMOS – impact of power system architecture**

►Baseband – **power management techniques**

- **Dynamic process temperature compensation (DPTC)** dynamically adjusts the supply voltage relative to the current temperature and the manufacturing process used
- • **Dynamic voltage frequency scaling (DVFS)** reduces operating voltage to the minimum level needed to support only the minimum operating frequency required by applications at any given moment
- **Active well biasing** reduces standby leakage by lowering the well voltage of the transistor
- **Technology choice** for optimum trade-offs between speed and low-power, high-performance, but with leaky transistors (low voltage threshold) versus ultralow power semiconductor circuits (high voltage threshold) for functional modules with modest performance requirements.

eXtreme Energy Conservation

►Power Management IC

• **Smart MOS Process**

low cost CMOS process

• **Voltage conversion**

- **Efficient switching regulators**
- \mathbf{u} . Standby controls for low power states
- Support for DVFS and DPTC control

CMOS transistor leakage versus process geometry

- ►Leakage becomes a significant issue at 90 nm process and smaller
- ► Below 32 nm leakage approaches active power
	- (active power -> CV 2F)
	- • (static leakage power -> non-clocked power)
		- 90 nm : 15pA/um
		- 65 nm : 20pA/um
		- 45 nm : 250pA/um
		- 32 nm : 450pA/um
- ► Gate oxide thickness proportional to process geometry node
	- Leakage and maximum supply voltage

CMOS Leakage

- Raising gate-source Vt (better turn off) degrades speed performance
- Process can be set to higher speed performance or lower leakage

eXtreme Energy Conservation on Cellular Baseband

►**Dynamic process temperature compensation (DPTC)**

- Dynamically adjusts the supply voltage relative to the temperature and the manufacturing process used
	- **Factory set implementation**
		- Fuses are set to indicate best Vdd for desired clock speed ► Read by software to set power management Vdd setting
	- **Real time DPTC**
		- Software controls Vdd based on reference circuits on die

►**Dynamic voltage frequency scaling (DVFS)**

- Reduces Vdd to the minimum level needed to support operating frequency required by applications at any given moment
- Requires finite amount of time to change settings
	- Power management controlled voltage slew
	- Clock setting decrease or increase must follow voltage change to ensure sufficient Vdd to support clocking rate

►**Bulk bias change**

- Negative channel isolation well bias voltage raises Vt slightly
- Positive effect diminished below 90 nm process nodes

eXtreme Energy Conservation on Cellular Baseband

►**Save and Restore**

- Prior to entering deep sleep, software saves critical register/memory
- Vdd is shut down to circuit sections that were backed up
- Software retrieves and restores register setting upon reactivation

►**State retention power gating (SRPG)**

- Prior to entering wait or deep sleep, critical registers of high performance (high leakage) circuits are automatically backed up to parallel low leakage registers
- Vdd is shut down to high leakage circuits while low leakage backup registers Vdd is maintained
- Usually restricted to processor core registers and other critical registers due to die area impact. (no large memory blocks)

►**Clock gating**

• Inactive circuit blocks are 'frozen' by shutting down their clocking

Power Mode Definitions for MXC91321 Cellular Baseband

Power Mode Definitions for MXC91321 Cellular Baseband

65 nm Power Saving Modes

65 nM Use Case driven DVFS Modes

RF power savings

►RF CMOS

- Operating Vdd 1.0 to 1.4 vdc
	- Advantage to power converters (switching) supply from battery.

►Interfaces

- Low voltage, differential digital (LVDS) signaling
	- Pushing large signal swings at higher and higher frequencies is not power efficient and creates EMI noise

► RF power amplifiers

- Power converters (switchers)
- Stage by-passing

Power Management Integrated Circuit Power Techniques

- ► Why we still have PMIC chips
	- Handle supply voltage of battery and charging circuitry
	- Cost effective less process layers
- ►SMOS10 -> power management, 130 nm low cost process
	- Up to 20 volts capable
- ► Higher speed voltage converter switching for smaller external components – higher switching speed = smaller $L & C$ of filter
	- Challenging drive power (CV²F) of switching transistor gates
		- Pulse skipping modes for low load demands
		- Change to linear mode at very low load demands
- ► System interlocking control
	- Continuous feedback DVFS, voltage <-> clocking speed

Software involvement in Power reduction

- ►Deep Sleep Mode
	- Architect early in software plan
- ►DVFS utilization
	- Resource loading management clock speed & Vdd set based on need
- ►Modem Processor SW
	- Batch use of interrupts where possible
		- Consideration for cache integrity
	- L1 cache/RAM/ROM fastest
		- Create less clock cycle waits for L2 or external memory
		- ROM much less capacitive load on processor bus due to smaller cell size
			- Total loading on processor bus limits processor speed and impacts power consumption
- ►Applications Processor SW
	- Power management Driver
		- Efficient OS 'tick' utilization, batching where possible

Related Session Resources

Session Location – Online Literature Library

http://www.freescale.com/webapp/sps/site/homepage.jsp?nodeId=052577903644CB

Sessions

Demos

